/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ #include #include #include "Storage.h" #include "HAL_ChibiOS_Class.h" #include "Scheduler.h" #include "hwdef/common/flash.h" #include #include using namespace ChibiOS; #ifndef HAL_USE_EMPTY_STORAGE extern const AP_HAL::HAL& hal; #ifndef HAL_STORAGE_FILE // using SKETCHNAME allows the one microSD to be used // for multiple vehicle types #define HAL_STORAGE_FILE "/APM/" SKETCHNAME ".stg" #endif #ifndef HAL_STORAGE_BACKUP_FOLDER // location of backup file #define HAL_STORAGE_BACKUP_FOLDER "/APM/STRG_BAK" #endif #ifndef HAL_STORAGE_BACKUP_COUNT #define HAL_STORAGE_BACKUP_COUNT 100 #endif #define STORAGE_FLASH_RETRIES 5 // by default don't allow fallback to sdcard for storage #ifndef HAL_RAMTRON_ALLOW_FALLBACK #define HAL_RAMTRON_ALLOW_FALLBACK 0 #endif void Storage::_storage_open(void) { if (_initialisedType != StorageBackend::None) { return; } _dirty_mask.clearall(); #if HAL_WITH_RAMTRON if (fram.init() && fram.read(0, _buffer, CH_STORAGE_SIZE)) { _save_backup(); _initialisedType = StorageBackend::FRAM; ::printf("Initialised Storage type=%d\n", _initialisedType); return; } #if !HAL_RAMTRON_ALLOW_FALLBACK AP_HAL::panic("Unable to init RAMTRON storage"); #endif #endif // HAL_WITH_RAMTRON // allow for devices with no FRAM chip to fall through to other storage #ifdef STORAGE_FLASH_PAGE // load from storage backend _flash_load(); _save_backup(); _initialisedType = StorageBackend::Flash; #elif defined(USE_POSIX) // if we have failed filesystem init don't try again if (log_fd == -1) { return; } // use microSD based storage if (AP::FS().retry_mount()) { log_fd = AP::FS().open(HAL_STORAGE_FILE, O_RDWR|O_CREAT); if (log_fd == -1) { ::printf("open failed of " HAL_STORAGE_FILE "\n"); return; } int ret = AP::FS().read(log_fd, _buffer, CH_STORAGE_SIZE); if (ret < 0) { ::printf("read failed for " HAL_STORAGE_FILE "\n"); AP::FS().close(log_fd); log_fd = -1; return; } // pre-fill to full size if (AP::FS().lseek(log_fd, ret, SEEK_SET) != ret || (CH_STORAGE_SIZE-ret > 0 && AP::FS().write(log_fd, &_buffer[ret], CH_STORAGE_SIZE-ret) != CH_STORAGE_SIZE-ret)) { ::printf("setup failed for " HAL_STORAGE_FILE "\n"); AP::FS().close(log_fd); log_fd = -1; return; } _save_backup(); _initialisedType = StorageBackend::SDCard; } #endif if (_initialisedType != StorageBackend::None) { ::printf("Initialised Storage type=%d\n", _initialisedType); } else { AP_HAL::panic("Unable to init Storage backend"); } } /* save a backup of storage file if we have microSD available. This is very handy for diagnostics, and for moving a copy of storage into SITL for testing */ void Storage::_save_backup(void) { #ifdef USE_POSIX // allow for fallback to microSD based storage // create the backup directory if need be int ret; const char* _storage_bak_directory = HAL_STORAGE_BACKUP_FOLDER; if (hal.util->was_watchdog_armed()) { // we are under watchdog reset // ain't got no time... return; } EXPECT_DELAY_MS(3000); // We want to do this desperately, // So we keep trying this for a second uint32_t start_millis = AP_HAL::millis(); while(!AP::FS().retry_mount() && (AP_HAL::millis() - start_millis) < 1000) { hal.scheduler->delay(1); } ret = AP::FS().mkdir(_storage_bak_directory); if (ret == -1 && errno != EEXIST) { return; } char* fname = nullptr; unsigned curr_bak = 0; ret = asprintf(&fname, "%s/last_storage_bak", _storage_bak_directory); if (fname == nullptr && (ret <= 0)) { return; } int fd = AP::FS().open(fname, O_RDONLY); if (fd != -1) { char buf[10]; memset(buf, 0, sizeof(buf)); if (AP::FS().read(fd, buf, sizeof(buf)-1) > 0) { //only record last HAL_STORAGE_BACKUP_COUNT backups curr_bak = (strtol(buf, NULL, 10) + 1)%HAL_STORAGE_BACKUP_COUNT; } AP::FS().close(fd); } fd = AP::FS().open(fname, O_WRONLY|O_CREAT|O_TRUNC); free(fname); fname = nullptr; if (fd != -1) { char buf[10]; snprintf(buf, sizeof(buf), "%u\r\n", (unsigned)curr_bak); const ssize_t to_write = strlen(buf); const ssize_t written = AP::FS().write(fd, buf, to_write); AP::FS().close(fd); if (written < to_write) { return; } } else { return; } // create and write fram data to file ret = asprintf(&fname, "%s/STRG%d.bak", _storage_bak_directory, curr_bak); if (fname == nullptr || (ret <= 0)) { return; } fd = AP::FS().open(fname, O_WRONLY|O_CREAT|O_TRUNC); free(fname); fname = nullptr; if (fd != -1) { //finally dump the fram data AP::FS().write(fd, _buffer, CH_STORAGE_SIZE); AP::FS().close(fd); } #endif } /* mark some lines as dirty. Note that there is no attempt to avoid the race condition between this code and the _timer_tick() code below, which both update _dirty_mask. If we lose the race then the result is that a line is written more than once, but it won't result in a line not being written. */ void Storage::_mark_dirty(uint16_t loc, uint16_t length) { if (length == 0) { return; } uint16_t end = loc + length - 1; for (uint16_t line=loc>>CH_STORAGE_LINE_SHIFT; line <= end>>CH_STORAGE_LINE_SHIFT; line++) { _dirty_mask.set(line); } } void Storage::read_block(void *dst, uint16_t loc, size_t n) { if ((n > sizeof(_buffer)) || (loc > (sizeof(_buffer) - n))) { return; } _storage_open(); memcpy(dst, &_buffer[loc], n); } void Storage::write_block(uint16_t loc, const void *src, size_t n) { if ((n > sizeof(_buffer)) || (loc > (sizeof(_buffer) - n))) { return; } if (memcmp(src, &_buffer[loc], n) != 0) { _storage_open(); WITH_SEMAPHORE(sem); memcpy(&_buffer[loc], src, n); _mark_dirty(loc, n); } } void Storage::_timer_tick(void) { if (_initialisedType == StorageBackend::None) { return; } if (_dirty_mask.empty()) { _last_empty_ms = AP_HAL::millis(); return; } // write out the first dirty line. We don't write more // than one to keep the latency of this call to a minimum uint16_t i; for (i=0; igetpageaddr(_flash_page+sector); for (uint8_t i=0; iwrite(base_address+offset, data, length)) { return true; } hal.scheduler->delay(1); } if (_flash_erase_ok()) { // we are getting flash write errors while disarmed. Try // re-writing all of flash uint32_t now = AP_HAL::millis(); if (now - _last_re_init_ms > 5000) { _last_re_init_ms = now; bool ok = _flash.re_initialise(); ::printf("Storage: failed at %u:%u for %u - re-init %u\n", (unsigned)sector, (unsigned)offset, (unsigned)length, (unsigned)ok); } } return false; #else return false; #endif } /* callback to read data from flash */ bool Storage::_flash_read_data(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length) { #ifdef STORAGE_FLASH_PAGE size_t base_address = hal.flash->getpageaddr(_flash_page+sector); const uint8_t *b = ((const uint8_t *)base_address)+offset; memcpy(data, b, length); return true; #else return false; #endif } /* callback to erase flash sector */ bool Storage::_flash_erase_sector(uint8_t sector) { #ifdef STORAGE_FLASH_PAGE // erasing a page can take long enough that USB may not initialise properly if it happens // while the host is connecting. Only do a flash erase if we have been up for more than 4s for (uint8_t i=0; i_expect_delay_ms(1000); if (hal.flash->erasepage(_flash_page+sector)) { sched->_expect_delay_ms(0); return true; } sched->_expect_delay_ms(0); hal.scheduler->delay(1); } return false; #else return false; #endif } /* callback to check if erase is allowed */ bool Storage::_flash_erase_ok(void) { // only allow erase while disarmed return !hal.util->get_soft_armed(); } /* consider storage healthy if we have nothing to write sometime in the last 2 seconds */ bool Storage::healthy(void) { #ifdef USE_POSIX // SD card storage is really slow if (_initialisedType == StorageBackend::SDCard) { return log_fd != -1 || AP_HAL::millis() - _last_empty_ms < 30000U; } #endif return ((_initialisedType != StorageBackend::None) && (AP_HAL::millis() - _last_empty_ms < 2000u)); } /* erase all storage */ bool Storage::erase(void) { #if HAL_WITH_RAMTRON if (_initialisedType == StorageBackend::FRAM) { return AP_HAL::Storage::erase(); } #endif #ifdef USE_POSIX if (_initialisedType == StorageBackend::SDCard) { return AP_HAL::Storage::erase(); } #endif #ifdef STORAGE_FLASH_PAGE return _flash.erase(); #else return false; #endif } /* get storage size and ptr */ bool Storage::get_storage_ptr(void *&ptr, size_t &size) { if (_initialisedType==StorageBackend::None) { return false; } ptr = _buffer; size = sizeof(_buffer); return true; } #endif // HAL_USE_EMPTY_STORAGE