/* SITL handling This simulates a GPS on a serial port Andrew Tridgell November 2011 */ #include "SIM_GPS.h" #if HAL_SIM_GPS_ENABLED #include #include #include #include #include #include #include "SIM_GPS_FILE.h" #include "SIM_GPS_Trimble.h" #include "SIM_GPS_MSP.h" #include "SIM_GPS_NMEA.h" #include "SIM_GPS_NOVA.h" #include "SIM_GPS_SBP2.h" #include "SIM_GPS_SBP.h" #include "SIM_GPS_UBLOX.h" #include "SIM_GPS_SBF.h" #include // the number of GPS leap seconds - copied from AP_GPS.h #define GPS_LEAPSECONDS_MILLIS 18000ULL extern const AP_HAL::HAL& hal; using namespace SITL; // ensure the backend we have allocated matches the one that's configured: GPS_Backend::GPS_Backend(GPS &_front, uint8_t _instance) : front{_front}, instance{_instance} { _sitl = AP::sitl(); } ssize_t GPS_Backend::write_to_autopilot(const char *p, size_t size) const { return front.write_to_autopilot(p, size); } ssize_t GPS_Backend::read_from_autopilot(char *buffer, size_t size) const { return front.read_from_autopilot(buffer, size); } GPS::GPS(uint8_t _instance) : SerialDevice(8192, 2048), instance{_instance} { } uint32_t GPS::device_baud() const { if (backend == nullptr) { return 0; } return backend->device_baud(); } /* write some bytes from the simulated GPS */ ssize_t GPS::write_to_autopilot(const char *p, size_t size) const { // the second GPS instance fails in a different way to the first; // the first will start sending back 3 satellites, the second just // stops responding when disabled. This is not necessarily a good // thing. if (instance == 1 && _sitl->gps_disable[instance]) { return -1; } const float byteloss = _sitl->gps_byteloss[instance]; // shortcut if we're not doing byteloss: if (!is_positive(byteloss)) { return SerialDevice::write_to_autopilot(p, size); } size_t ret = 0; while (size--) { float r = ((((unsigned)random()) % 1000000)) / 1.0e4; if (r < byteloss) { // lose the byte p++; continue; } const ssize_t pret = SerialDevice::write_to_autopilot(p, 1); if (pret == 0) { // no space? return ret; } if (pret != 1) { // error has occured? return pret; } ret++; p++; } return ret; } /* get timeval using simulation time */ void GPS_Backend::simulation_timeval(struct timeval *tv) { uint64_t now = AP_HAL::micros64(); static uint64_t first_usec; static struct timeval first_tv; if (first_usec == 0) { first_usec = now; first_tv.tv_sec = AP::sitl()->start_time_UTC; } *tv = first_tv; tv->tv_sec += now / 1000000ULL; uint64_t new_usec = tv->tv_usec + (now % 1000000ULL); tv->tv_sec += new_usec / 1000000ULL; tv->tv_usec = new_usec % 1000000ULL; } /* simple simulation of jamming */ void GPS::simulate_jamming(struct GPS_Data &d) { auto &jam = jamming[instance]; const uint32_t now_ms = AP_HAL::millis(); if (now_ms - jam.last_jam_ms > 1000) { jam.jam_start_ms = now_ms; jam.latitude = d.latitude; jam.longitude = d.longitude; } jam.last_jam_ms = now_ms; // how often each of the key state variables change during jamming const float vz_change_hz = 0.5; const float vel_change_hz = 0.8; const float pos_change_hz = 1.1; const float sats_change_hz = 3; const float acc_change_hz = 3; if (now_ms - jam.jam_start_ms < unsigned(1000U+(get_random16()%5000))) { // total loss of signal for a period at the start is common d.num_sats = 0; d.have_lock = false; } else { if ((now_ms - jam.last_sats_change_ms)*0.001 > 2*fabsf(rand_float())/sats_change_hz) { jam.last_sats_change_ms = now_ms; d.num_sats = 2 + (get_random16() % 15); if (d.num_sats >= 4) { if (get_random16() % 2 == 0) { d.have_lock = false; } else { d.have_lock = true; } } else { d.have_lock = false; } } if ((now_ms - jam.last_vz_change_ms)*0.001 > 2*fabsf(rand_float())/vz_change_hz) { jam.last_vz_change_ms = now_ms; d.speedD = rand_float() * 400; } if ((now_ms - jam.last_vel_change_ms)*0.001 > 2*fabsf(rand_float())/vel_change_hz) { jam.last_vel_change_ms = now_ms; d.speedN = rand_float() * 400; d.speedE = rand_float() * 400; } if ((now_ms - jam.last_pos_change_ms)*0.001 > 2*fabsf(rand_float())/pos_change_hz) { jam.last_pos_change_ms = now_ms; jam.latitude += rand_float()*200 * LATLON_TO_M_INV * 1e-7; jam.longitude += rand_float()*200 * LATLON_TO_M_INV * 1e-7; } if ((now_ms - jam.last_acc_change_ms)*0.001 > 2*fabsf(rand_float())/acc_change_hz) { jam.last_acc_change_ms = now_ms; d.vertical_acc = fabsf(rand_float())*300; d.horizontal_acc = fabsf(rand_float())*300; d.speed_acc = fabsf(rand_float())*50; } } d.latitude = constrain_float(jam.latitude, -90, 90); d.longitude = constrain_float(jam.longitude, -180, 180); } /* return GPS time of week */ GPS_Backend::GPS_TOW GPS_Backend::gps_time() { GPS_TOW gps_tow; struct timeval tv; simulation_timeval(&tv); const uint32_t epoch = 86400*(10*365 + (1980-1969)/4 + 1 + 6 - 2) - (GPS_LEAPSECONDS_MILLIS / 1000ULL); uint32_t epoch_seconds = tv.tv_sec - epoch; gps_tow.week = epoch_seconds / AP_SEC_PER_WEEK; uint32_t t_ms = tv.tv_usec / 1000; // round time to nearest 200ms gps_tow.ms = (epoch_seconds % AP_SEC_PER_WEEK) * AP_MSEC_PER_SEC + ((t_ms/200) * 200); return gps_tow; } void GPS::check_backend_allocation() { const Type configured_type = Type(_sitl->gps_type[instance].get()); if (allocated_type == configured_type) { return; } // mismatch; delete any already-allocated backend: if (backend != nullptr) { delete backend; backend = nullptr; } // attempt to allocate backend switch (configured_type) { case Type::NONE: // no GPS attached break; #if AP_SIM_GPS_UBLOX_ENABLED case Type::UBLOX: backend = NEW_NOTHROW GPS_UBlox(*this, instance); break; #endif #if AP_SIM_GPS_NMEA_ENABLED case Type::NMEA: backend = NEW_NOTHROW GPS_NMEA(*this, instance); break; #endif #if AP_SIM_GPS_SBP_ENABLED case Type::SBP: backend = NEW_NOTHROW GPS_SBP(*this, instance); break; #endif #if AP_SIM_GPS_SBP2_ENABLED case Type::SBP2: backend = NEW_NOTHROW GPS_SBP2(*this, instance); break; #endif #if AP_SIM_GPS_NOVA_ENABLED case Type::NOVA: backend = NEW_NOTHROW GPS_NOVA(*this, instance); break; #endif #if AP_SIM_GPS_MSP_ENABLED case Type::MSP: backend = NEW_NOTHROW GPS_MSP(*this, instance); break; #endif #if AP_SIM_GPS_SBF_ENABLED case Type::SBF: backend = NEW_NOTHROW GPS_SBF(*this, instance); break; #endif #if AP_SIM_GPS_TRIMBLE_ENABLED case Type::TRIMBLE: backend = NEW_NOTHROW GPS_Trimble(*this, instance); break; #endif #if AP_SIM_GPS_FILE_ENABLED case Type::FILE: backend = NEW_NOTHROW GPS_FILE(*this, instance); break; #endif }; if (configured_type != Type::NONE && backend == nullptr) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "SIM_GPS: No backend for %u", (unsigned)configured_type); } allocated_type = configured_type; } /* possibly send a new GPS packet */ void GPS::update() { if (!init_sitl_pointer()) { return; } check_backend_allocation(); if (backend == nullptr) { return; } double latitude =_sitl->state.latitude; double longitude = _sitl->state.longitude; float altitude = _sitl->state.altitude; const double speedN = _sitl->state.speedN; const double speedE = _sitl->state.speedE; const double speedD = _sitl->state.speedD; const uint32_t now_ms = AP_HAL::millis(); if (now_ms < 20000) { // apply the init offsets for the first 20s. This allows for // having the origin a long way from the takeoff location, // which makes testing long flights easier latitude += _sitl->gps_init_lat_ofs; longitude += _sitl->gps_init_lon_ofs; altitude += _sitl->gps_init_alt_ofs; } //Capture current position as basestation location for if (!_gps_has_basestation_position && now_ms >= _sitl->gps_lock_time[0]*1000UL) { _gps_basestation_data.latitude = latitude; _gps_basestation_data.longitude = longitude; _gps_basestation_data.altitude = altitude; _gps_basestation_data.speedN = speedN; _gps_basestation_data.speedE = speedE; _gps_basestation_data.speedD = speedD; _gps_has_basestation_position = true; } const uint8_t idx = instance; // alias to avoid code churn struct GPS_Data d {}; // simulate delayed lock times bool have_lock = (!_sitl->gps_disable[idx] && now_ms >= _sitl->gps_lock_time[idx]*1000UL); // Only let physics run and GPS write at configured GPS rate (default 5Hz). if ((now_ms - last_write_update_ms) < (uint32_t)(1000/_sitl->gps_hertz[instance])) { // Reading runs every iteration. // Beware- physics don't update every iteration with this approach. // Currently, none of the drivers rely on quickly updated physics. backend->update_read(); return; } last_write_update_ms = now_ms; d.latitude = latitude; d.longitude = longitude; d.yaw_deg = _sitl->state.yawDeg; d.roll_deg = _sitl->state.rollDeg; d.pitch_deg = _sitl->state.pitchDeg; // add an altitude error controlled by a slow sine wave d.altitude = altitude + _sitl->gps_noise[idx] * sinf(now_ms * 0.0005f) + _sitl->gps_alt_offset[idx]; // Add offset to c.g. velocity to get velocity at antenna and add simulated error Vector3f velErrorNED = _sitl->gps_vel_err[idx]; d.speedN = speedN + (velErrorNED.x * rand_float()); d.speedE = speedE + (velErrorNED.y * rand_float()); d.speedD = speedD + (velErrorNED.z * rand_float()); d.have_lock = have_lock; if (_sitl->gps_drift_alt[idx] > 0) { // add slow altitude drift controlled by a slow sine wave d.altitude += _sitl->gps_drift_alt[idx]*sinf(now_ms*0.001f*0.02f); } // correct the latitude, longitude, height and NED velocity for the offset between // the vehicle c.g. and GPS antenna Vector3f posRelOffsetBF = _sitl->gps_pos_offset[idx]; if (!posRelOffsetBF.is_zero()) { // get a rotation matrix following DCM conventions (body to earth) Matrix3f rotmat; _sitl->state.quaternion.rotation_matrix(rotmat); // rotate the antenna offset into the earth frame Vector3f posRelOffsetEF = rotmat * posRelOffsetBF; // Add the offset to the latitude, longitude and height using a spherical earth approximation double const earth_rad_inv = 1.569612305760477e-7; // use Authalic/Volumetric radius double lng_scale_factor = earth_rad_inv / cos(radians(d.latitude)); d.latitude += degrees(posRelOffsetEF.x * earth_rad_inv); d.longitude += degrees(posRelOffsetEF.y * lng_scale_factor); d.altitude -= posRelOffsetEF.z; // calculate a velocity offset due to the antenna position offset and body rotation rate // note: % operator is overloaded for cross product Vector3f gyro(radians(_sitl->state.rollRate), radians(_sitl->state.pitchRate), radians(_sitl->state.yawRate)); Vector3f velRelOffsetBF = gyro % posRelOffsetBF; // rotate the velocity offset into earth frame and add to the c.g. velocity Vector3f velRelOffsetEF = rotmat * velRelOffsetBF; d.speedN += velRelOffsetEF.x; d.speedE += velRelOffsetEF.y; d.speedD += velRelOffsetEF.z; } // get delayed data d.timestamp_ms = now_ms; d = interpolate_data(d, _sitl->gps_delay_ms[instance]); // Applying GPS glitch // Using first gps glitch Vector3f glitch_offsets = _sitl->gps_glitch[idx]; d.latitude += glitch_offsets.x; d.longitude += glitch_offsets.y; d.altitude += glitch_offsets.z; if (_sitl->gps_jam[idx] == 1) { simulate_jamming(d); } backend->publish(&d); } void GPS_Backend::update_read() { // swallow any config bytes char c; read_from_autopilot(&c, 1); } /* get delayed data by interpolation */ GPS_Data GPS::interpolate_data(const GPS_Data &d, uint32_t delay_ms) { const uint8_t N = ARRAY_SIZE(_gps_history); const uint32_t now_ms = d.timestamp_ms; // add in into history array, shifting old elements memmove(&_gps_history[1], &_gps_history[0], sizeof(_gps_history[0])*(ARRAY_SIZE(_gps_history)-1)); _gps_history[0] = d; for (uint8_t i=0; i= dt1 && delay_ms <= dt2) { // we will interpolate this pair of samples. Start with // the older sample const GPS_Data &s1 = _gps_history[i+1]; const GPS_Data &s2 = _gps_history[i]; GPS_Data d2 = s1; const float p = (dt2 - delay_ms) / MAX(1,float(dt2 - dt1)); d2.latitude += p * (s2.latitude - s1.latitude); d2.longitude += p * (s2.longitude - s1.longitude); d2.altitude += p * (s2.altitude - s1.altitude); d2.speedN += p * (s2.speedN - s1.speedN); d2.speedE += p * (s2.speedE - s1.speedE); d2.speedD += p * (s2.speedD - s1.speedD); d2.yaw_deg += p * wrap_180(s2.yaw_deg - s1.yaw_deg); return d2; } } // delay is too long, use last sample return _gps_history[N-1]; } float GPS_Data::ground_track_rad() const { return atan2f(speedE, speedN); } float GPS_Data::speed_2d() const { const auto velocity = Vector2d{speedN, speedE}; return velocity.length(); } #endif // HAL_SIM_GPS_ENABLED