#include #include const AP_HAL::HAL& hal = AP_HAL::get_HAL(); TEST(Vector2Test, Operator) { Vector2f v_float0{1.0f, 1.0f}; EXPECT_FALSE(v_float0.is_zero()); v_float0 = Vector2f(); EXPECT_TRUE(v_float0.is_zero()); v_float0[1] = 1.0f; EXPECT_FALSE(v_float0.is_zero()); const float testf1 = v_float0[1]; EXPECT_TRUE(is_equal(testf1, 1.0f)); v_float0.zero(); EXPECT_TRUE(v_float0.is_zero()); Vector2i v_inti1{1, 1}; EXPECT_FALSE(v_inti1.is_zero()); v_inti1 = Vector2i(); EXPECT_TRUE(v_inti1.is_zero()); v_inti1[0] = 1; EXPECT_FALSE(v_inti1.is_zero()); const int16_t testi1 = v_inti1[0]; EXPECT_TRUE(1 == testi1); v_inti1.zero(); EXPECT_TRUE(v_inti1.is_zero()); Vector2ui v_uinti1{1u, 1u}; EXPECT_FALSE(v_uinti1.is_zero()); v_uinti1 = Vector2ui(); EXPECT_TRUE(v_uinti1.is_zero()); v_uinti1[0] = 1u; EXPECT_FALSE(v_uinti1.is_zero()); const uint16_t testui1 = v_uinti1[0]; EXPECT_TRUE(1u == testui1); v_uinti1.zero(); EXPECT_TRUE(v_uinti1.is_zero()); Vector2l v_intl1{1, 1}; EXPECT_FALSE(v_intl1.is_zero()); v_intl1 = Vector2l(); EXPECT_TRUE(v_intl1.is_zero()); v_intl1[0] = 1; EXPECT_FALSE(v_intl1.is_zero()); const int32_t testl1 = v_intl1[0]; EXPECT_TRUE(1 == testl1); v_intl1.zero(); EXPECT_TRUE(v_intl1.is_zero()); Vector2ul v_uint1l{1, 1}; EXPECT_FALSE(v_uint1l.is_zero()); v_uint1l = Vector2ul(); EXPECT_TRUE(v_uint1l.is_zero()); v_uint1l[0] = 1; EXPECT_FALSE(v_uint1l.is_zero()); const uint32_t testul1 = v_uint1l[0]; EXPECT_TRUE(1 == testul1); v_uint1l.zero(); EXPECT_TRUE(v_uint1l.is_zero()); Vector2f v_float1(1.0f, 1.0f); Vector2f v_float2(1.0f, 0.0f); EXPECT_FLOAT_EQ(1.0f, v_float1 * v_float2); EXPECT_FLOAT_EQ(-1.0f, v_float1 % v_float2); v_float1 *= 2.0f; EXPECT_TRUE(Vector2f(2.0f, 2.0f) == v_float1); v_float1 /= 2.0f; EXPECT_TRUE(Vector2f(1.0f, 1.0f) == v_float1); v_float1 -= v_float2; EXPECT_TRUE(Vector2f(0.0f, 1.0f) == v_float1); v_float1 += v_float2; EXPECT_TRUE(Vector2f(1.0f, 1.0f) == v_float1); EXPECT_TRUE(Vector2f(nanf("0x4152"), 1.0f).is_nan()); EXPECT_TRUE(Vector2f(1.0f / 0.0f, 1.0f).is_inf()); EXPECT_TRUE(Vector2f(2.0f, 2.0f) / 2.0f == v_float1); EXPECT_TRUE(Vector2f(2.0f, 2.0f) == v_float1 * 2.0f); EXPECT_TRUE(Vector2f(2.0f, 2.0f) - v_float1 == v_float1); EXPECT_TRUE(Vector2f(2.0f, 2.0f) == v_float1 + v_float1); EXPECT_TRUE(Vector2f(-1.0f, -1.0f) == -v_float1); v_float1.zero(); EXPECT_TRUE(v_float1.is_zero()); } TEST(Vector2Test, IsEqual) { Vector2l v_int1(1, 1); Vector2l v_int2(1, 0); Vector2 v_long1(1, 1); Vector2 v_long2(1, 0); Vector2f v_float1(1.0f, 1.0f); Vector2f v_float2(1.0f, 0.0f); EXPECT_FALSE(v_int1 == v_int2); EXPECT_TRUE(v_int1 == v_int1); EXPECT_TRUE(v_int1 != v_int2); EXPECT_FALSE(v_int1 != v_int1); EXPECT_FALSE(v_long1 == v_long2); EXPECT_TRUE(v_long1 == v_long1); EXPECT_TRUE(v_long1 != v_long2); EXPECT_FALSE(v_long1 != v_long1); EXPECT_FALSE(v_float1 == v_float2); EXPECT_TRUE(v_float1 == v_float1); EXPECT_TRUE(v_float1 != v_float2); EXPECT_FALSE(v_float1 != v_float1); } TEST(Vector2Test, angle) { EXPECT_FLOAT_EQ(M_PI/2, Vector2f(0, 1).angle()); EXPECT_FLOAT_EQ(M_PI/4, Vector2f(1, 1).angle()); EXPECT_TRUE(is_zero(Vector2d(1, 0).angle())); EXPECT_FLOAT_EQ(M_PI*5/4, Vector2f(-1, -1).angle()); EXPECT_FLOAT_EQ(M_PI*5/4, Vector2f(-5, -5).angle()); EXPECT_FLOAT_EQ(M_PI/2, Vector2f(0.0f, 1.0f).angle(Vector2f(1.0f, 0.0f))); EXPECT_FLOAT_EQ(0.0f, Vector2f(0.5f, 0.5f).angle(Vector2f(0.5f, 0.5f))); EXPECT_FLOAT_EQ(M_PI, Vector2f(0.5f, -0.5f).angle(Vector2f(-0.5f, 0.5f))); EXPECT_FLOAT_EQ(0.0f, Vector2f(-0.0f, 0).angle(Vector2f(0.0f, 1.0f))); } TEST(Vector2Test, length) { EXPECT_FLOAT_EQ(25, Vector2f(3, 4).length_squared()); Vector2f v_float1(1.0f, 1.0f); EXPECT_TRUE(v_float1.limit_length(1.0f)); EXPECT_FALSE(Vector2f(-0.0f, 0.0f).limit_length(1.0f)); } TEST(Vector2Test, normalized) { Vector2f v_float1(3.0f, 3.0f); v_float1.normalize(); EXPECT_EQ(Vector2f(3.0f, 3.0f).normalized(), v_float1); EXPECT_EQ(Vector2f(sqrtf(2)/2, sqrtf(2)/2), Vector2f(5, 5).normalized()); EXPECT_EQ(Vector2f(3, 3).normalized(), Vector2f(5, 5).normalized()); EXPECT_EQ(Vector2f(-3, 3).normalized(), Vector2f(-5, 5).normalized()); EXPECT_NE(Vector2f(-3, 3).normalized(), Vector2f(5, 5).normalized()); } TEST(Vector2Test, Project) { Vector2f v_float1(1.0f, 1.0f); Vector2f v_float2(2.0f, 1.0f); v_float1.project(v_float2); EXPECT_EQ(Vector2f(1.0f, 1.0f).projected(v_float2), v_float1); } TEST(Vector2Test, reflect) { Vector2f reflected1 = Vector2f(3, 8); reflected1.reflect(Vector2f(0, 1)); EXPECT_EQ(reflected1, Vector2f(-3, 8)); // colinear vectors Vector2f reflected2 = Vector2f(3, 3); reflected2.reflect(Vector2f(1, 1)); EXPECT_EQ(reflected2, Vector2f(3, 3)); // orthogonal vectors Vector2f reflected3 = Vector2f(3, 3); reflected3.reflect(Vector2f(1, -1)); EXPECT_EQ(reflected3, Vector2f(-3, -3)); // rotation Vector2f base = Vector2f(2, 1); base.rotate(radians(90)); EXPECT_FLOAT_EQ(base.x, -1); EXPECT_FLOAT_EQ(base.y, 2); } TEST(Vector2Test, Offset_bearing) { Vector2f v_float1(1.0f, 0.0f); v_float1.offset_bearing(0.0f, 1.0f); EXPECT_EQ(Vector2f(2.0f, 0.0f), v_float1); } TEST(Vector2Test, Perpendicular) { Vector2f v_float1(1.0f, 1.0f); EXPECT_EQ(Vector2f(0.0f, 2.0f), v_float1.perpendicular(v_float1, Vector2f(2.0f, 0.0f))); EXPECT_EQ(Vector2f(2.0f, 0.0f), v_float1.perpendicular(v_float1, Vector2f(0.0f, 2.0f))); } TEST(Vector2Test, closest_point) { // closest_point is (p, v,w) // the silly case: EXPECT_EQ((Vector2f{0, 0}), (Vector2f::closest_point(Vector2f{0, 0}, Vector2f{0, 0}, Vector2f{0, 0}))); // on line: EXPECT_EQ((Vector2f{0, 0}), (Vector2f::closest_point(Vector2f{0, 0}, Vector2f{0, 0}, Vector2f{1, 1}))); EXPECT_EQ((Vector2f{5, 5}), (Vector2f::closest_point(Vector2f{5, 5}, Vector2f{0, 0}, Vector2f{5, 5}))); // on line but not segment: EXPECT_EQ((Vector2f{5, 5}), (Vector2f::closest_point(Vector2f{6, 6}, Vector2f{0, 0}, Vector2f{5, 5}))); EXPECT_EQ((Vector2f{0.5, 0.5}), (Vector2f::closest_point(Vector2f{1,0}, Vector2f{0, 0}, Vector2f{5, 5}))); EXPECT_EQ((Vector2f{0, 1}), (Vector2f::closest_point(Vector2f{0,0}, Vector2f{-1, 1}, Vector2f{1, 1}))); // to (0,w) // the silly case: EXPECT_EQ((Vector2f{0, 0}), (Vector2f::closest_point(Vector2f{0, 0}, Vector2f{0, 0}))); // on line: EXPECT_EQ((Vector2f{0, 0}), (Vector2f::closest_point(Vector2f{0, 0}, Vector2f{1, 1}))); EXPECT_EQ((Vector2f{5, 5}), (Vector2f::closest_point(Vector2f{5, 5}, Vector2f{5, 5}))); // on line but not segment: EXPECT_EQ((Vector2f{5, 5}), (Vector2f::closest_point(Vector2f{6, 6}, Vector2f{5, 5}))); EXPECT_EQ((Vector2f{0.5, 0.5}), (Vector2f::closest_point(Vector2f{1,0}, Vector2f{5, 5}))); EXPECT_EQ((Vector2f{0, 0}), (Vector2f::closest_point(Vector2f{0,0}, Vector2f{1, 1}))); } TEST(Vector2Test, closest_distance) { EXPECT_FLOAT_EQ(1.0f, Vector2f::closest_distance_between_line_and_point_squared(Vector2f{0,0}, Vector2f{1, 0}, Vector2f{0, 1})); EXPECT_FLOAT_EQ(1.0f, Vector2f::closest_distance_between_line_and_point(Vector2f{0,0}, Vector2f{1, 0}, Vector2f{0, 1})); EXPECT_FLOAT_EQ(1.0f, Vector2f::closest_distance_between_lines_squared(Vector2f{0,0}, Vector2f{1, 0}, Vector2f{0, 1}, Vector2f{1, 1})); EXPECT_FLOAT_EQ(1.0f, Vector2f::closest_distance_between_radial_and_point_squared(Vector2f{0, 1}, Vector2f{1, 1})); EXPECT_FLOAT_EQ(1.0f, Vector2f::closest_distance_between_radial_and_point(Vector2f{0, 1}, Vector2f{1, 1})); } TEST(Vector2Test, segment_intersectionx) { Vector2f intersection; EXPECT_EQ(Vector2f::segment_intersection( Vector2f{-1.0f, 0.0f}, // seg start Vector2f{1.0f, 0.0f}, // seg end Vector2f{0.0f, -1.0f}, // seg start Vector2f{0.0f, 1.0f}, // seg end intersection // return value for intersection point ), true); EXPECT_EQ(intersection, Vector2f(0.0f, 0.0f)); EXPECT_EQ(Vector2f::segment_intersection( Vector2f{1.0f, 0.0f}, // seg start Vector2f{2.0f, 0.0f}, // seg end Vector2f{0.0f, -1.0f}, // seg start Vector2f{0.0f, 1.0f}, // seg end intersection // return value for intersection point ), false); EXPECT_EQ(Vector2f::segment_intersection( Vector2f{1.0f, 0.0f}, // seg start Vector2f{2.0f, 0.0f}, // seg end Vector2f{1.0f, 1.0f}, // seg start Vector2f{2.0f, 1.0f}, // seg end intersection // return value for intersection point ), false); } TEST(Vector2Test, circle_segment_intersectionx) { Vector2f intersection; EXPECT_EQ(Vector2f::circle_segment_intersection( Vector2f{0,0}, // seg start Vector2f{1,1}, // seg end Vector2f{0,0}, // circle center 0.5, // circle radius intersection // return value for intersection point ), true); EXPECT_EQ(intersection, Vector2f(sqrtf(0.5)/2,sqrtf(0.5)/2)); EXPECT_EQ(Vector2f::circle_segment_intersection( Vector2f{std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()}, // seg start Vector2f{1,1}, // seg end Vector2f{0,0}, // circle center 0.5, // circle radius intersection // return value for intersection point ), false); } TEST(Vector2Test, point_on_segmentx) { EXPECT_EQ(Vector2f::point_on_segment( Vector2f{0.0f, 1.0f}, // point Vector2f{0.0f, 0.0f}, // seg start Vector2f{0.0f, 2.0f} // seg end ), true); EXPECT_EQ(Vector2f::point_on_segment( Vector2f{1.0f, 1.0f}, // point Vector2f{0.0f, 0.0f}, // seg start Vector2f{0.0f, 2.0f} // seg end ), false); EXPECT_EQ(Vector2f::point_on_segment( Vector2f{1.0f, 1.0f}, // point Vector2f{0.0f, 0.0f}, // seg start Vector2f{3.0f, 1.0f} // seg end ), false); printf("4\n"); EXPECT_EQ(Vector2f::point_on_segment( Vector2f{1.0f, 0.0f}, // point Vector2f{2.0f, 1.0f}, // seg start Vector2f{3.0f, 2.0f} // seg end ), false); EXPECT_EQ(Vector2f::point_on_segment( Vector2f{5.0f, 0.0f}, // point Vector2f{4.0f, 1.0f}, // seg start Vector2f{3.0f, 2.0f} // seg end ), false); EXPECT_EQ(Vector2f::point_on_segment( Vector2f{3.0f, 0.0f}, // point Vector2f{3.0f, 1.0f}, // seg start Vector2f{3.0f, 2.0f} // seg end ), false); EXPECT_EQ(Vector2f::point_on_segment( Vector2f{3.0f, 0.0f}, // point Vector2f{3.0f, 2.0f}, // seg start Vector2f{3.0f, 1.0f} // seg end ), false); } AP_GTEST_MAIN()