#include "Plane.h" #include "version.h" #if LOGGING_ENABLED == ENABLED #if CLI_ENABLED == ENABLED // Code to Write and Read packets from DataFlash.log memory // Code to interact with the user to dump or erase logs // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details static const struct Menu::command log_menu_commands[] = { {"dump", MENU_FUNC(dump_log)}, {"erase", MENU_FUNC(erase_logs)}, {"enable", MENU_FUNC(select_logs)}, {"disable", MENU_FUNC(select_logs)} }; // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, FUNCTOR_BIND(&plane, &Plane::print_log_menu, bool)); bool Plane::print_log_menu(void) { cliSerial->printf("logs enabled: \n"); if (0 == g.log_bitmask) { cliSerial->printf("none\n"); }else{ // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // the bit being set and print the name of the log option to suit. #define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf(" %s", # _s) PLOG(ATTITUDE_FAST); PLOG(ATTITUDE_MED); PLOG(GPS); PLOG(PM); PLOG(CTUN); PLOG(NTUN); PLOG(MODE); PLOG(IMU); PLOG(CMD); PLOG(CURRENT); PLOG(COMPASS); PLOG(TECS); PLOG(CAMERA); PLOG(RC); PLOG(SONAR); #undef PLOG } cliSerial->printf("\n"); DataFlash.ListAvailableLogs(cliSerial); return(true); } int8_t Plane::dump_log(uint8_t argc, const Menu::arg *argv) { int16_t dump_log_num; uint16_t dump_log_start; uint16_t dump_log_end; // check that the requested log number can be read dump_log_num = argv[1].i; if (dump_log_num == -2) { DataFlash.DumpPageInfo(cliSerial); return(-1); } else if (dump_log_num <= 0) { cliSerial->printf("dumping all\n"); Log_Read(0, 1, 0); return(-1); } else if ((argc != 2) || ((uint16_t)dump_log_num > DataFlash.get_num_logs())) { cliSerial->printf("bad log number\n"); return(-1); } DataFlash.get_log_boundaries(dump_log_num, dump_log_start, dump_log_end); Log_Read((uint16_t)dump_log_num, dump_log_start, dump_log_end); return 0; } int8_t Plane::erase_logs(uint8_t argc, const Menu::arg *argv) { in_mavlink_delay = true; do_erase_logs(); in_mavlink_delay = false; return 0; } int8_t Plane::select_logs(uint8_t argc, const Menu::arg *argv) { uint32_t bits; if (argc != 2) { cliSerial->printf("missing log type\n"); return(-1); } bits = 0; // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp(argv[1].str, "all")) { bits = 0xFFFFFFFFUL; } else { #define TARG(_s) if (!strcasecmp(argv[1].str, # _s)) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(MODE); TARG(IMU); TARG(CMD); TARG(CURRENT); TARG(COMPASS); TARG(TECS); TARG(CAMERA); TARG(RC); TARG(SONAR); #undef TARG } if (!strcasecmp(argv[0].str, "enable")) { g.log_bitmask.set_and_save(g.log_bitmask | bits); }else{ g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } int8_t Plane::process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); return 0; } #endif // CLI_ENABLED == ENABLED void Plane::do_erase_logs(void) { gcs_send_text(MAV_SEVERITY_INFO, "Erasing logs"); DataFlash.EraseAll(); gcs_send_text(MAV_SEVERITY_INFO, "Log erase complete"); } // Write an attitude packet void Plane::Log_Write_Attitude(void) { Vector3f targets; // Package up the targets into a vector for commonality with Copter usage of Log_Wrote_Attitude targets.x = nav_roll_cd; targets.y = nav_pitch_cd; targets.z = 0; //Plane does not have the concept of navyaw. This is a placeholder. DataFlash.Log_Write_Attitude(ahrs, targets); if (quadplane.in_vtol_mode()) { DataFlash.Log_Write_PID(LOG_PIDR_MSG, quadplane.attitude_control->get_rate_roll_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDP_MSG, quadplane.attitude_control->get_rate_pitch_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDY_MSG, quadplane.attitude_control->get_rate_yaw_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDA_MSG, quadplane.pid_accel_z.get_pid_info() ); } else { const DataFlash_Class::PID_Info *landing_info; DataFlash.Log_Write_PID(LOG_PIDR_MSG, rollController.get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDP_MSG, pitchController.get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDY_MSG, yawController.get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDS_MSG, steerController.get_pid_info()); if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) { landing_info = landing.get_pid_info(); if (landing_info != nullptr) { // only log LANDING PID's while in landing DataFlash.Log_Write_PID(LOG_PIDL_MSG, *landing_info); } } } #if AP_AHRS_NAVEKF_AVAILABLE #if OPTFLOW == ENABLED DataFlash.Log_Write_EKF(ahrs,optflow.enabled()); #else DataFlash.Log_Write_EKF(ahrs,false); #endif DataFlash.Log_Write_AHRS2(ahrs); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL sitl.Log_Write_SIMSTATE(&DataFlash); #endif DataFlash.Log_Write_POS(ahrs); } // do logging at loop rate void Plane::Log_Write_Fast(void) { if (should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); } } struct PACKED log_Performance { LOG_PACKET_HEADER; uint64_t time_us; uint16_t num_long; uint16_t main_loop_count; uint32_t g_dt_max; uint32_t g_dt_min; uint32_t log_dropped; }; // Write a performance monitoring packet. Total length : 19 bytes void Plane::Log_Write_Performance() { struct log_Performance pkt = { LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG), time_us : AP_HAL::micros64(), num_long : perf.num_long, main_loop_count : perf.mainLoop_count, g_dt_max : perf.G_Dt_max, g_dt_min : perf.G_Dt_min, log_dropped : DataFlash.num_dropped() - perf.last_log_dropped }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } struct PACKED log_Startup { LOG_PACKET_HEADER; uint64_t time_us; uint8_t startup_type; uint16_t command_total; }; void Plane::Log_Write_Startup(uint8_t type) { struct log_Startup pkt = { LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG), time_us : AP_HAL::micros64(), startup_type : type, command_total : mission.num_commands() }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } struct PACKED log_Control_Tuning { LOG_PACKET_HEADER; uint64_t time_us; int16_t nav_roll_cd; int16_t roll; int16_t nav_pitch_cd; int16_t pitch; int16_t throttle_out; int16_t rudder_out; int16_t throttle_dem; }; // Write a control tuning packet. Total length : 22 bytes void Plane::Log_Write_Control_Tuning() { struct log_Control_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_CTUN_MSG), time_us : AP_HAL::micros64(), nav_roll_cd : (int16_t)nav_roll_cd, roll : (int16_t)ahrs.roll_sensor, nav_pitch_cd : (int16_t)nav_pitch_cd, pitch : (int16_t)ahrs.pitch_sensor, throttle_out : (int16_t)SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), rudder_out : (int16_t)SRV_Channels::get_output_scaled(SRV_Channel::k_rudder), throttle_dem : (int16_t)SpdHgt_Controller->get_throttle_demand() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Nav_Tuning { LOG_PACKET_HEADER; uint64_t time_us; float wp_distance; int16_t target_bearing_cd; int16_t nav_bearing_cd; int16_t altitude_error_cm; float xtrack_error; float xtrack_error_i; float airspeed_error; }; // Write a navigation tuning packet void Plane::Log_Write_Nav_Tuning() { struct log_Nav_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG), time_us : AP_HAL::micros64(), wp_distance : auto_state.wp_distance, target_bearing_cd : (int16_t)nav_controller->target_bearing_cd(), nav_bearing_cd : (int16_t)nav_controller->nav_bearing_cd(), altitude_error_cm : (int16_t)altitude_error_cm, xtrack_error : nav_controller->crosstrack_error(), xtrack_error_i : nav_controller->crosstrack_error_integrator(), airspeed_error : airspeed_error }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Status { LOG_PACKET_HEADER; uint64_t time_us; uint8_t is_flying; float is_flying_probability; uint8_t armed; uint8_t safety; bool is_crashed; bool is_still; uint8_t stage; bool impact; }; void Plane::Log_Write_Status() { struct log_Status pkt = { LOG_PACKET_HEADER_INIT(LOG_STATUS_MSG) ,time_us : AP_HAL::micros64() ,is_flying : is_flying() ,is_flying_probability : isFlyingProbability ,armed : hal.util->get_soft_armed() ,safety : static_cast(hal.util->safety_switch_state()) ,is_crashed : crash_state.is_crashed ,is_still : plane.ins.is_still() ,stage : static_cast(flight_stage) ,impact : crash_state.impact_detected }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Sonar { LOG_PACKET_HEADER; uint64_t time_us; float distance; float voltage; uint8_t count; float correction; }; // Write a sonar packet void Plane::Log_Write_Sonar() { uint16_t distance = 0; if (rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::RangeFinder_Good) { distance = rangefinder.distance_cm_orient(ROTATION_PITCH_270); } struct log_Sonar pkt = { LOG_PACKET_HEADER_INIT(LOG_SONAR_MSG), time_us : AP_HAL::micros64(), distance : (float)distance*0.01f, voltage : rangefinder.voltage_mv_orient(ROTATION_PITCH_270)*0.001f, count : rangefinder_state.in_range_count, correction : rangefinder_state.correction }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); DataFlash.Log_Write_RFND(rangefinder); } struct PACKED log_Optflow { LOG_PACKET_HEADER; uint64_t time_us; uint8_t surface_quality; float flow_x; float flow_y; float body_x; float body_y; }; #if OPTFLOW == ENABLED // Write an optical flow packet void Plane::Log_Write_Optflow() { // exit immediately if not enabled if (!optflow.enabled()) { return; } const Vector2f &flowRate = optflow.flowRate(); const Vector2f &bodyRate = optflow.bodyRate(); struct log_Optflow pkt = { LOG_PACKET_HEADER_INIT(LOG_OPTFLOW_MSG), time_us : AP_HAL::micros64(), surface_quality : optflow.quality(), flow_x : flowRate.x, flow_y : flowRate.y, body_x : bodyRate.x, body_y : bodyRate.y }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } #endif struct PACKED log_Arm_Disarm { LOG_PACKET_HEADER; uint64_t time_us; uint8_t arm_state; uint16_t arm_checks; }; void Plane::Log_Write_Current() { DataFlash.Log_Write_Current(battery); // also write power status DataFlash.Log_Write_Power(); } void Plane::Log_Arm_Disarm() { struct log_Arm_Disarm pkt = { LOG_PACKET_HEADER_INIT(LOG_ARM_DISARM_MSG), time_us : AP_HAL::micros64(), arm_state : arming.is_armed(), arm_checks : arming.get_enabled_checks() }; DataFlash.WriteCriticalBlock(&pkt, sizeof(pkt)); } void Plane::Log_Write_GPS(uint8_t instance) { if (!ahrs.have_ekf_logging()) { DataFlash.Log_Write_GPS(gps, instance); } } void Plane::Log_Write_IMU() { DataFlash.Log_Write_IMU(ins); } void Plane::Log_Write_RC(void) { DataFlash.Log_Write_RCIN(); DataFlash.Log_Write_RCOUT(); if (rssi.enabled()) { DataFlash.Log_Write_RSSI(rssi); } } void Plane::Log_Write_Baro(void) { if (!ahrs.have_ekf_logging()) { DataFlash.Log_Write_Baro(barometer); } } // Write a AIRSPEED packet void Plane::Log_Write_Airspeed(void) { DataFlash.Log_Write_Airspeed(airspeed); } // log ahrs home and EKF origin to dataflash void Plane::Log_Write_Home_And_Origin() { #if AP_AHRS_NAVEKF_AVAILABLE // log ekf origin if set Location ekf_orig; if (ahrs.get_origin(ekf_orig)) { DataFlash.Log_Write_Origin(LogOriginType::ekf_origin, ekf_orig); } #endif // log ahrs home if set if (home_is_set != HOME_UNSET) { DataFlash.Log_Write_Origin(LogOriginType::ahrs_home, ahrs.get_home()); } } const struct LogStructure Plane::log_structure[] = { LOG_COMMON_STRUCTURES, { LOG_PERFORMANCE_MSG, sizeof(log_Performance), "PM", "QHHIII", "TimeUS,NLon,NLoop,MaxT,MinT,LogDrop" }, { LOG_STARTUP_MSG, sizeof(log_Startup), "STRT", "QBH", "TimeUS,SType,CTot" }, { LOG_CTUN_MSG, sizeof(log_Control_Tuning), "CTUN", "Qcccchhh", "TimeUS,NavRoll,Roll,NavPitch,Pitch,ThrOut,RdrOut,ThrDem" }, { LOG_NTUN_MSG, sizeof(log_Nav_Tuning), "NTUN", "Qfcccfff", "TimeUS,WpDist,TargBrg,NavBrg,AltErr,XT,XTi,ArspdErr" }, { LOG_SONAR_MSG, sizeof(log_Sonar), "SONR", "QffBf", "TimeUS,Dist,Volt,Cnt,Corr" }, { LOG_ARM_DISARM_MSG, sizeof(log_Arm_Disarm), "ARM", "QBH", "TimeUS,ArmState,ArmChecks" }, { LOG_ATRP_MSG, sizeof(AP_AutoTune::log_ATRP), "ATRP", "QBBcfff", "TimeUS,Type,State,Servo,Demanded,Achieved,P" }, { LOG_STATUS_MSG, sizeof(log_Status), "STAT", "QBfBBBBBB", "TimeUS,isFlying,isFlyProb,Armed,Safety,Crash,Still,Stage,Hit" }, { LOG_QTUN_MSG, sizeof(QuadPlane::log_QControl_Tuning), "QTUN", "Qffffehhffff", "TimeUS,AngBst,ThrOut,DAlt,Alt,BarAlt,DCRt,CRt,DVx,DVy,DAx,DAy" }, #if OPTFLOW == ENABLED { LOG_OPTFLOW_MSG, sizeof(log_Optflow), "OF", "QBffff", "TimeUS,Qual,flowX,flowY,bodyX,bodyY" }, #endif }; #if CLI_ENABLED == ENABLED // Read the DataFlash.log memory : Packet Parser void Plane::Log_Read(uint16_t list_entry, int16_t start_page, int16_t end_page) { cliSerial->printf("\n" FIRMWARE_STRING "\nFree RAM: %u\n", (unsigned)hal.util->available_memory()); cliSerial->printf("%s\n", HAL_BOARD_NAME); DataFlash.LogReadProcess(list_entry, start_page, end_page, FUNCTOR_BIND_MEMBER(&Plane::print_flight_mode, void, AP_HAL::BetterStream *, uint8_t), cliSerial); } #endif // CLI_ENABLED void Plane::Log_Write_Vehicle_Startup_Messages() { // only 200(?) bytes are guaranteed by DataFlash Log_Write_Startup(TYPE_GROUNDSTART_MSG); DataFlash.Log_Write_Mode(control_mode); DataFlash.Log_Write_Rally(rally); } // start a new log void Plane::start_logging() { DataFlash.set_mission(&mission); DataFlash.setVehicle_Startup_Log_Writer( FUNCTOR_BIND(&plane, &Plane::Log_Write_Vehicle_Startup_Messages, void) ); DataFlash.StartNewLog(); } /* initialise logging subsystem */ void Plane::log_init(void) { DataFlash.Init(log_structure, ARRAY_SIZE(log_structure)); if (!DataFlash.CardInserted()) { gcs_send_text(MAV_SEVERITY_WARNING, "No dataflash card inserted"); } else if (DataFlash.NeedPrep()) { gcs_send_text(MAV_SEVERITY_INFO, "Preparing log system"); DataFlash.Prep(); gcs_send_text(MAV_SEVERITY_INFO, "Prepared log system"); gcs().reset_cli_timeout(); } } #else // LOGGING_ENABLED #if CLI_ENABLED == ENABLED bool Plane::print_log_menu(void) { return true; } int8_t Plane::dump_log(uint8_t argc, const Menu::arg *argv) { return 0; } int8_t Plane::erase_logs(uint8_t argc, const Menu::arg *argv) { return 0; } int8_t Plane::select_logs(uint8_t argc, const Menu::arg *argv) { return 0; } int8_t Plane::process_logs(uint8_t argc, const Menu::arg *argv) { return 0; } #endif // CLI_ENABLED == ENABLED void Plane::do_erase_logs(void) {} void Plane::Log_Write_Attitude(void) {} void Plane::Log_Write_Fast(void) {} void Plane::Log_Write_Performance() {} void Plane::Log_Write_Startup(uint8_t type) {} void Plane::Log_Write_Control_Tuning() {} void Plane::Log_Write_Nav_Tuning() {} void Plane::Log_Write_Status() {} void Plane::Log_Write_Sonar() {} #if OPTFLOW == ENABLED void Plane::Log_Write_Optflow() {} #endif void Plane::Log_Write_Current() {} void Plane::Log_Arm_Disarm() {} void Plane::Log_Write_GPS(uint8_t instance) {} void Plane::Log_Write_IMU() {} void Plane::Log_Write_RC(void) {} void Plane::Log_Write_Baro(void) {} void Plane::Log_Write_Airspeed(void) {} void Plane::Log_Write_Home_And_Origin() {} #if CLI_ENABLED == ENABLED void Plane::Log_Read(uint16_t log_num, int16_t start_page, int16_t end_page) {} #endif // CLI_ENABLED void Plane::start_logging() {} void Plane::log_init(void) {} #endif // LOGGING_ENABLED