/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* originally written by Jose Julio, Pat Hickey and Jordi Muñoz Heavily modified by Andrew Tridgell */ #include #include "AP_Baro.h" extern const AP_HAL::HAL& hal; #define CMD_MS5611_RESET 0x1E #define CMD_MS5611_PROM_Setup 0xA0 #define CMD_MS5611_PROM_C1 0xA2 #define CMD_MS5611_PROM_C2 0xA4 #define CMD_MS5611_PROM_C3 0xA6 #define CMD_MS5611_PROM_C4 0xA8 #define CMD_MS5611_PROM_C5 0xAA #define CMD_MS5611_PROM_C6 0xAC #define CMD_MS5611_PROM_CRC 0xAE #define CMD_CONVERT_D1_OSR4096 0x48 // Maximum resolution (oversampling) #define CMD_CONVERT_D2_OSR4096 0x58 // Maximum resolution (oversampling) // SPI Device ////////////////////////////////////////////////////////////////// AP_SerialBus_SPI::AP_SerialBus_SPI(enum AP_HAL::SPIDevice device, enum AP_HAL::SPIDeviceDriver::bus_speed speed) : _device(device), _speed(speed), _spi(NULL), _spi_sem(NULL) { } void AP_SerialBus_SPI::init() { _spi = hal.spi->device(_device); if (_spi == NULL) { hal.scheduler->panic(PSTR("did not get valid SPI device driver!")); } _spi_sem = _spi->get_semaphore(); if (_spi_sem == NULL) { hal.scheduler->panic(PSTR("AP_SerialBus_SPI did not get valid SPI semaphroe!")); } _spi->set_bus_speed(_speed); } uint16_t AP_SerialBus_SPI::read_16bits(uint8_t reg) { uint8_t tx[3] = { reg, 0, 0 }; uint8_t rx[3]; _spi->transaction(tx, rx, 3); return ((uint16_t) rx[1] << 8 ) | ( rx[2] ); } uint32_t AP_SerialBus_SPI::read_24bits(uint8_t reg) { uint8_t tx[4] = { reg, 0, 0, 0 }; uint8_t rx[4]; _spi->transaction(tx, rx, 4); return (((uint32_t)rx[1])<<16) | (((uint32_t)rx[2])<<8) | ((uint32_t)rx[3]); } void AP_SerialBus_SPI::write(uint8_t reg) { uint8_t tx[1] = { reg }; _spi->transaction(tx, NULL, 1); } bool AP_SerialBus_SPI::sem_take_blocking() { return _spi_sem->take(10); } bool AP_SerialBus_SPI::sem_take_nonblocking() { return _spi_sem->take_nonblocking(); } void AP_SerialBus_SPI::sem_give() { _spi_sem->give(); } /// I2C SerialBus AP_SerialBus_I2C::AP_SerialBus_I2C(uint8_t addr) : _addr(addr), _i2c_sem(NULL) { } void AP_SerialBus_I2C::init() { _i2c_sem = hal.i2c->get_semaphore(); if (_i2c_sem == NULL) { hal.scheduler->panic(PSTR("AP_SerialBus_I2C did not get valid I2C semaphore!")); } } uint16_t AP_SerialBus_I2C::read_16bits(uint8_t reg) { uint8_t buf[2]; if (hal.i2c->readRegisters(_addr, reg, sizeof(buf), buf) == 0) { return (((uint16_t)(buf[0]) << 8) | buf[1]); } return 0; } uint32_t AP_SerialBus_I2C::read_24bits(uint8_t reg) { uint8_t buf[3]; if (hal.i2c->readRegisters(_addr, reg, sizeof(buf), buf) == 0) { return (((uint32_t)buf[0]) << 16) | (((uint32_t)buf[1]) << 8) | buf[2]; } return 0; } void AP_SerialBus_I2C::write(uint8_t reg) { hal.i2c->write(_addr, 1, ®); } bool AP_SerialBus_I2C::sem_take_blocking() { return _i2c_sem->take(10); } bool AP_SerialBus_I2C::sem_take_nonblocking() { return _i2c_sem->take_nonblocking(); } void AP_SerialBus_I2C::sem_give() { _i2c_sem->give(); } /* constructor */ AP_Baro_MS5611::AP_Baro_MS5611(AP_Baro &baro, AP_SerialBus *serial, bool use_timer) : AP_Baro_Backend(baro), _serial(serial), _updated(false), _state(0), _last_timer(0), _use_timer(use_timer) { _instance = _frontend.register_sensor(); _serial->init(); if (!_serial->sem_take_blocking()){ hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: failed to take serial semaphore for init")); } _serial->write(CMD_MS5611_RESET); hal.scheduler->delay(4); // We read the factory calibration // The on-chip CRC is not used C1 = _serial->read_16bits(CMD_MS5611_PROM_C1); C2 = _serial->read_16bits(CMD_MS5611_PROM_C2); C3 = _serial->read_16bits(CMD_MS5611_PROM_C3); C4 = _serial->read_16bits(CMD_MS5611_PROM_C4); C5 = _serial->read_16bits(CMD_MS5611_PROM_C5); C6 = _serial->read_16bits(CMD_MS5611_PROM_C6); if (!_check_crc()) { hal.scheduler->panic(PSTR("Bad CRC on MS5611")); } // Send a command to read Temp first _serial->write(CMD_CONVERT_D2_OSR4096); _last_timer = hal.scheduler->micros(); _state = 0; _s_D1 = 0; _s_D2 = 0; _d1_count = 0; _d2_count = 0; _serial->sem_give(); if (_use_timer) { hal.scheduler->register_timer_process( AP_HAL_MEMBERPROC(&AP_Baro_MS5611::_timer)); } } /** * MS5611 crc4 method based on PX4Firmware code */ bool AP_Baro_MS5611::_check_crc(void) { int16_t cnt; uint16_t n_rem; uint16_t crc_read; uint8_t n_bit; uint16_t n_prom[8] = { _serial->read_16bits(CMD_MS5611_PROM_Setup), C1, C2, C3, C4, C5, C6, _serial->read_16bits(CMD_MS5611_PROM_CRC) }; n_rem = 0x00; /* save the read crc */ crc_read = n_prom[7]; /* remove CRC byte */ n_prom[7] = (0xFF00 & (n_prom[7])); for (cnt = 0; cnt < 16; cnt++) { /* uneven bytes */ if (cnt & 1) { n_rem ^= (uint8_t)((n_prom[cnt >> 1]) & 0x00FF); } else { n_rem ^= (uint8_t)(n_prom[cnt >> 1] >> 8); } for (n_bit = 8; n_bit > 0; n_bit--) { if (n_rem & 0x8000) { n_rem = (n_rem << 1) ^ 0x3000; } else { n_rem = (n_rem << 1); } } } /* final 4 bit remainder is CRC value */ n_rem = (0x000F & (n_rem >> 12)); n_prom[7] = crc_read; /* return true if CRCs match */ return (0x000F & crc_read) == (n_rem ^ 0x00); } /* Read the sensor. This is a state machine We read one time Temperature (state=1) and then 4 times Pressure (states 2-5) temperature does not change so quickly... */ void AP_Baro_MS5611::_timer(void) { // Throttle read rate to 100hz maximum. if (hal.scheduler->micros() - _last_timer < 10000) { return; } if (!_serial->sem_take_nonblocking()) { return; } if (_state == 0) { // On state 0 we read temp uint32_t d2 = _serial->read_24bits(0); if (d2 != 0) { _s_D2 += d2; _d2_count++; if (_d2_count == 32) { // we have summed 32 values. This only happens // when we stop reading the barometer for a long time // (more than 1.2 seconds) _s_D2 >>= 1; _d2_count = 16; } } _state++; _serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure } else { uint32_t d1 = _serial->read_24bits(0);; if (d1 != 0) { // occasional zero values have been seen on the PXF // board. These may be SPI errors, but safest to ignore _s_D1 += d1; _d1_count++; if (_d1_count == 128) { // we have summed 128 values. This only happens // when we stop reading the barometer for a long time // (more than 1.2 seconds) _s_D1 >>= 1; _d1_count = 64; } // Now a new reading exists _updated = true; } _state++; if (_state == 5) { _serial->write(CMD_CONVERT_D2_OSR4096); // Command to read temperature _state = 0; } else { _serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure } } _last_timer = hal.scheduler->micros(); _serial->sem_give(); } void AP_Baro_MS5611::update() { if (!_use_timer) { // if we're not using the timer then accumulate one more time // to cope with the calibration loop and minimise lag accumulate(); } if (!_updated) { return; } uint32_t sD1, sD2; uint8_t d1count, d2count; // Suspend timer procs because these variables are written to // in "_update". hal.scheduler->suspend_timer_procs(); sD1 = _s_D1; _s_D1 = 0; sD2 = _s_D2; _s_D2 = 0; d1count = _d1_count; _d1_count = 0; d2count = _d2_count; _d2_count = 0; _updated = false; hal.scheduler->resume_timer_procs(); if (d1count != 0) { D1 = ((float)sD1) / d1count; } if (d2count != 0) { D2 = ((float)sD2) / d2count; } _calculate(); } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS5611::_calculate() { float dT; float TEMP; float OFF; float SENS; // Formulas from manufacturer datasheet // sub -20c temperature compensation is not included // we do the calculations using floating point // as this is much faster on an AVR2560, and also allows // us to take advantage of the averaging of D1 and D1 over // multiple samples, giving us more precision dT = D2-(((uint32_t)C5)<<8); TEMP = (dT * C6)/8388608; OFF = C2 * 65536.0f + (C4 * dT) / 128; SENS = C1 * 32768.0f + (C3 * dT) / 256; if (TEMP < 0) { // second order temperature compensation when under 20 degrees C float T2 = (dT*dT) / 0x80000000; float Aux = TEMP*TEMP; float OFF2 = 2.5f*Aux; float SENS2 = 1.25f*Aux; TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } float pressure = (D1*SENS/2097152 - OFF)/32768; float temperature = (TEMP + 2000) * 0.01f; _copy_to_frontend(_instance, pressure, temperature); } /* Read the sensor from main code. This is only used for I2C MS5611 to avoid conflicts on the semaphore from calling it in a timer, which conflicts with the compass driver use of I2C */ void AP_Baro_MS5611::accumulate(void) { if (!_use_timer) { // the timer isn't being called as a timer, so we need to call // it in accumulate() _timer(); } }