/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- void control_nav_mixer() { // control +- 45° is mixed with the navigation request by the Autopilot // output is in degrees = target pitch and roll of copter g.rc_1.servo_out = g.rc_1.control_mix(nav_roll); g.rc_2.servo_out = g.rc_2.control_mix(nav_pitch); } void simple_mixer() { // control +- 45° is mixed with the navigation request by the Autopilot // output is in degrees = target pitch and roll of copter g.rc_1.servo_out = nav_roll; g.rc_2.servo_out = nav_pitch; } void limit_nav_pitch_roll(long pmax) { // limit the nav pitch and roll of the copter //long pmax = g.pitch_max.get(); nav_roll = constrain(nav_roll, -pmax, pmax); nav_pitch = constrain(nav_pitch, -pmax, pmax); } void output_stabilize_roll() { float error; error = g.rc_1.servo_out - dcm.roll_sensor; // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // write out angles back to servo out - this will be converted to PWM by RC_Channel g.rc_1.servo_out = g.pid_stabilize_roll.get_pi(error, delta_ms_fast_loop, 1.0); // 2500 * .7 = 1750 // We adjust the output by the rate of rotation: // Rate control through bias corrected gyro rates // omega is the raw gyro reading g.rc_1.servo_out -= degrees(omega.x) * 100.0 * g.pid_stabilize_roll.kD(); g.rc_1.servo_out = min(g.rc_1.servo_out, 2500); g.rc_1.servo_out = max(g.rc_1.servo_out, -2500); } void output_stabilize_pitch() { float error; error = g.rc_2.servo_out - dcm.pitch_sensor; // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // write out angles back to servo out - this will be converted to PWM by RC_Channel g.rc_2.servo_out = g.pid_stabilize_pitch.get_pi(error, delta_ms_fast_loop, 1.0); // We adjust the output by the rate of rotation: // Rate control through bias corrected gyro rates // omega is the raw gyro reading g.rc_2.servo_out -= degrees(omega.y) * 100.0 * g.pid_stabilize_pitch.kD(); g.rc_2.servo_out = min(g.rc_2.servo_out, 2500); g.rc_2.servo_out = max(g.rc_2.servo_out, -2500); } void output_rate_roll() { // rate control long rate = degrees(omega.x) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! long error = ((long)g.rc_1.control_in * 8) - rate; // control is += 4500 * 8 = 36000 g.rc_1.servo_out = g.pid_acro_rate_roll.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 g.rc_1.servo_out = constrain(g.rc_1.servo_out, -2400, 2400); // limit to 2400 } void output_rate_pitch() { // rate control long rate = degrees(omega.y) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! long error = ((long)g.rc_2.control_in * 8) - rate; // control is += 4500 * 8 = 36000 g.rc_2.servo_out = g.pid_acro_rate_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 g.rc_2.servo_out = constrain(g.rc_2.servo_out, -2400, 2400); // limit to 2400 } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations void reset_I(void) { // I removed these, they don't seem to be needed. } /************************************************************* throttle control ****************************************************************/ // user input: // ----------- void output_manual_throttle() { g.rc_3.servo_out = (float)g.rc_3.control_in * angle_boost(); g.rc_3.servo_out = max(g.rc_3.servo_out, 0); } // Autopilot // --------- void output_auto_throttle() { g.rc_3.servo_out = (float)nav_throttle * angle_boost(); // make sure we never send a 0 throttle that will cut the motors g.rc_3.servo_out = max(g.rc_3.servo_out, 1); } void calc_nav_throttle() { // limit error nav_throttle = g.pid_baro_throttle.get_pid(altitude_error, delta_ms_medium_loop, 1.0); nav_throttle = g.throttle_cruise + constrain(nav_throttle, -60, 60); // simple filtering if(nav_throttle_old == 0) nav_throttle_old = nav_throttle; nav_throttle = (nav_throttle + nav_throttle_old) >> 1; nav_throttle_old = nav_throttle; // clear the new data flag invalid_throttle = false; //Serial.printf("nav_thr %d, scaler %2.2f ", nav_throttle, scaler); } void calc_nav_throttle2() { // limit error long error = constrain(altitude_error, -400, 400); float scaler = 1.0; if(error < 0){ // try and prevent rapid fall scaler = (altitude_sensor == BARO) ? .8 : .8; } if(altitude_sensor == BARO){ nav_throttle = g.pid_baro_throttle.get_pid(error, delta_ms_medium_loop, scaler); // .2 nav_throttle = g.throttle_cruise + constrain(nav_throttle, -30, 80); }else{ nav_throttle = g.pid_sonar_throttle.get_pid(error, delta_ms_medium_loop, scaler); // .5 nav_throttle = g.throttle_cruise + constrain(nav_throttle, -40, 100); } // simple filtering if(nav_throttle_old == 0) nav_throttle_old = nav_throttle; nav_throttle = (nav_throttle + nav_throttle_old) >> 1; nav_throttle_old = nav_throttle; // clear the new data flag invalid_throttle = false; //Serial.printf("nav_thr %d, scaler %2.2f ", nav_throttle, scaler); } float angle_boost() { float temp = cos_pitch_x * cos_roll_x; temp = 2.0 - constrain(temp, .5, 1.0); return temp; } /************************************************************* yaw control ****************************************************************/ void output_manual_yaw() { // Yaw control if(g.rc_4.control_in == 0){ output_yaw_with_hold(true); // hold yaw }else{ output_yaw_with_hold(false); // rate control yaw } } void auto_yaw() { output_yaw_with_hold(true); // hold yaw } void clear_yaw_control() { //Serial.print("Clear "); rate_yaw_flag = false; // exit rate_yaw_flag nav_yaw = dcm.yaw_sensor; // save our Yaw g.rc_4.servo_out = 0; // reset our output. It can stick when we are at 0 throttle yaw_error = 0; yaw_debug = YAW_HOLD; //0 } #if YAW_OPTION == 0 void output_yaw_with_hold(boolean hold) { // rate control long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! if(hold){ // look to see if we have exited rate control properly - ie stopped turning if(rate_yaw_flag){ // we are still in motion from rate control if((fabs(omega.z) < .25) || (brake_timer < 2)){ clear_yaw_control(); hold = true; // just to be explicit }else{ hold = false; // return to rate control until we slow down. } } }else{ // rate control // this indicates we are under rate control, when we enter Yaw Hold and // return to 0° per second, we exit rate control and hold the current Yaw rate_yaw_flag = true; yaw_error = 0; } if(hold){ brake_timer = 0; // try and hold the current nav_yaw setting yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60° // we need to wrap our value so we can be -180 to 180 (*100) yaw_error = wrap_180(yaw_error); // limit the error we're feeding to the PID yaw_error = constrain(yaw_error, -9000, 9000); // limit error to 40 degees // Apply PID and save the new angle back to RC_Channel g.rc_4.servo_out = g.pid_yaw.get_pi(yaw_error, delta_ms_fast_loop, 1.0); // .4 * 4000 = 1600 // add in yaw dampener g.rc_4.servo_out -= rate * g.pid_yaw.kD(); yaw_debug = YAW_HOLD; //0 }else{ if(g.rc_4.control_in == 0){ brake_timer--; // adaptive braking g.rc_4.servo_out = (int)(-1200.0 * omega.z); yaw_debug = YAW_BRAKE; // 1 }else{ // RATE control brake_timer = 100; yaw_debug = YAW_RATE; // 2 long error = ((long)g.rc_4.control_in * 6) - (degrees(omega.z) * 100); // control is += 4500 * 6 = 36000 g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0); // kP .07 * 36000 = 2520 } } // Limit Output g.rc_4.servo_out = constrain(g.rc_4.servo_out, -3200, 3200); // limit to 32° //Serial.printf("%d\n",g.rc_4.servo_out); } #elif YAW_OPTION == 1 void output_yaw_with_hold(boolean hold) { // re-define nav_yaw if we have stick input if(g.rc_4.control_in != 0){ // set nav_yaw + or - the current location //nav_yaw = (long)g.rc_4.control_in + dcm.yaw_sensor; nav_yaw += (long)(g.rc_4.control_in / 90); } // we need to wrap our value so we can be 0 to 360 (*100) nav_yaw = wrap_360(nav_yaw); // how far off is nav_yaw from our current yaw? yaw_error = nav_yaw - dcm.yaw_sensor; // we need to wrap our value so we can be -180 to 180 (*100) yaw_error = wrap_180(yaw_error); // limit the error we're feeding to the PID yaw_error = constrain(yaw_error, -3500, 3500); // limit error to 60 degees // Apply PID and save the new angle back to RC_Channel g.rc_4.servo_out = g.pid_yaw.get_pi(yaw_error, delta_ms_fast_loop, 1.0); // .4 * 4000 = 1600 // add in yaw dampener g.rc_4.servo_out -= (degrees(omega.z) * 100) * g.pid_yaw.kD(); g.rc_4.servo_out = constrain(g.rc_4.servo_out, -2500, 2500); // limit error to 60 degees } #elif YAW_OPTION == 2 void output_yaw_with_hold(boolean hold) { if(hold){ // try and hold the current nav_yaw setting yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60° // we need to wrap our value so we can be -180 to 180 (*100) yaw_error = wrap_180(yaw_error); // limit the error we're feeding to the PID yaw_error = constrain(yaw_error, -3500, 3500); // limit error to 40 degees // Apply PID and save the new angle back to RC_Channel g.rc_4.servo_out = g.pid_yaw.get_pi(yaw_error, delta_ms_fast_loop, 1.0); // .4 * 4000 = 1600 // add in yaw dampener g.rc_4.servo_out -= (degrees(omega.z) * 100) * g.pid_yaw.kD(); }else{ // RATE control long error = ((long)g.rc_4.control_in * 6) - (degrees(omega.z) * 100); // control is += 4500 * 6 = 36000 g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0); // kP .07 * 36000 = 2520 nav_yaw = dcm.yaw_sensor; // save our Yaw } // Limit Output g.rc_4.servo_out = constrain(g.rc_4.servo_out, -2500, 2500); // limit to 24° } #endif