/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
-- Coded by Victor Mayoral Vilches --
*/
#include
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "AP_InertialSensor_MPU9250.h"
#include "../AP_HAL_Linux/GPIO.h"
#include
extern const AP_HAL::HAL& hal;
// MPU6000 accelerometer scaling
#define MPU9250_ACCEL_SCALE_1G (GRAVITY_MSS / 4096.0f)
#define MPUREG_XG_OFFS_TC 0x00
#define MPUREG_YG_OFFS_TC 0x01
#define MPUREG_ZG_OFFS_TC 0x02
#define MPUREG_X_FINE_GAIN 0x03
#define MPUREG_Y_FINE_GAIN 0x04
#define MPUREG_Z_FINE_GAIN 0x05
// MPU9250 registers
#define MPUREG_XA_OFFS_H 0x77 // X axis accelerometer offset (high byte)
#define MPUREG_XA_OFFS_L 0x78 // X axis accelerometer offset (low byte)
#define MPUREG_YA_OFFS_H 0x7A // Y axis accelerometer offset (high byte)
#define MPUREG_YA_OFFS_L 0x0B // Y axis accelerometer offset (low byte)
#define MPUREG_ZA_OFFS_H 0x0D // Z axis accelerometer offset (high byte)
#define MPUREG_ZA_OFFS_L 0x0E // Z axis accelerometer offset (low byte)
// MPU6000 & MPU9250 registers
// not sure if present in MPU9250
// #define MPUREG_PRODUCT_ID 0x0C // Product ID Register
#define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte)
#define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte)
#define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte)
#define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte)
#define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte)
#define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte)
#define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(+1) = 200Hz
# define MPUREG_SMPLRT_1000HZ 0x00
# define MPUREG_SMPLRT_500HZ 0x01
# define MPUREG_SMPLRT_250HZ 0x03
# define MPUREG_SMPLRT_200HZ 0x04
# define MPUREG_SMPLRT_100HZ 0x09
# define MPUREG_SMPLRT_50HZ 0x13
#define MPUREG_CONFIG 0x1A
#define MPUREG_GYRO_CONFIG 0x1B
// bit definitions for MPUREG_GYRO_CONFIG
# define BITS_GYRO_FS_250DPS 0x00
# define BITS_GYRO_FS_500DPS 0x08
# define BITS_GYRO_FS_1000DPS 0x10
# define BITS_GYRO_FS_2000DPS 0x18
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits
# define BITS_GYRO_ZGYRO_SELFTEST 0x20
# define BITS_GYRO_YGYRO_SELFTEST 0x40
# define BITS_GYRO_XGYRO_SELFTEST 0x80
#define MPUREG_ACCEL_CONFIG 0x1C
#define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this
#define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation.
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
#define MPUREG_FIFO_EN 0x23
#define MPUREG_INT_PIN_CFG 0x37
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin
#define MPUREG_INT_ENABLE 0x38
// bit definitions for MPUREG_INT_ENABLE
# define BIT_RAW_RDY_EN 0x01
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems
# define BIT_UNKNOWN_INT_EN 0x04
# define BIT_I2C_MST_INT_EN 0x08
# define BIT_FIFO_OFLOW_EN 0x10
# define BIT_ZMOT_EN 0x20
# define BIT_MOT_EN 0x40
# define BIT_FF_EN 0x80
#define MPUREG_INT_STATUS 0x3A
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired)
# define BIT_RAW_RDY_INT 0x01
# define BIT_DMP_INT 0x02
# define BIT_UNKNOWN_INT 0x04
# define BIT_I2C_MST_INT 0x08
# define BIT_FIFO_OFLOW_INT 0x10
# define BIT_ZMOT_INT 0x20
# define BIT_MOT_INT 0x40
# define BIT_FF_INT 0x80
#define MPUREG_ACCEL_XOUT_H 0x3B
#define MPUREG_ACCEL_XOUT_L 0x3C
#define MPUREG_ACCEL_YOUT_H 0x3D
#define MPUREG_ACCEL_YOUT_L 0x3E
#define MPUREG_ACCEL_ZOUT_H 0x3F
#define MPUREG_ACCEL_ZOUT_L 0x40
#define MPUREG_TEMP_OUT_H 0x41
#define MPUREG_TEMP_OUT_L 0x42
#define MPUREG_GYRO_XOUT_H 0x43
#define MPUREG_GYRO_XOUT_L 0x44
#define MPUREG_GYRO_YOUT_H 0x45
#define MPUREG_GYRO_YOUT_L 0x46
#define MPUREG_GYRO_ZOUT_H 0x47
#define MPUREG_GYRO_ZOUT_L 0x48
#define MPUREG_USER_CTRL 0x6A
// bit definitions for MPUREG_USER_CTRL
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp)
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set)
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations
#define MPUREG_PWR_MGMT_1 0x6B
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
#define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode
#define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers)
#define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory)
#define MPUREG_MEM_R_W 0x6F // DMP related register
#define MPUREG_DMP_CFG_1 0x70 // DMP related register
#define MPUREG_DMP_CFG_2 0x71 // DMP related register
#define MPUREG_FIFO_COUNTH 0x72
#define MPUREG_FIFO_COUNTL 0x73
#define MPUREG_FIFO_R_W 0x74
#define MPUREG_WHOAMI 0x75
// Configuration bits MPU 3000, MPU 6000 and MPU9250
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
#define BITS_DLPF_CFG_188HZ 0x01
#define BITS_DLPF_CFG_98HZ 0x02
#define BITS_DLPF_CFG_42HZ 0x03
#define BITS_DLPF_CFG_20HZ 0x04
#define BITS_DLPF_CFG_10HZ 0x05
#define BITS_DLPF_CFG_5HZ 0x06
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
#define BITS_DLPF_CFG_MASK 0x07
/*
* PS-MPU-9250A-00.pdf, page 8, lists LSB sensitivity of
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
*/
#define GYRO_SCALE (0.0174532f / 16.4f)
/*
* PS-MPU-9250A-00.pdf, page 9, lists LSB sensitivity of
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
*
* See note below about accel scaling of engineering sample MPUXk
* variants however
*/
AP_InertialSensor_MPU9250::AP_InertialSensor_MPU9250() :
AP_InertialSensor(),
_initialised(false),
_mpu9250_product_id(AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE),
_last_filter_hz(-1),
_shared_data_idx(0),
_accel_filter_x(1000, 15),
_accel_filter_y(1000, 15),
_accel_filter_z(1000, 15),
_gyro_filter_x(1000, 15),
_gyro_filter_y(1000, 15),
_gyro_filter_z(1000, 15)
{
}
/*
initialise the sensor
*/
uint16_t AP_InertialSensor_MPU9250::_init_sensor( Sample_rate sample_rate )
{
if (_initialised) return _mpu9250_product_id;
_initialised = true;
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250);
_spi_sem = _spi->get_semaphore();
// we need to suspend timers to prevent other SPI drivers grabbing
// the bus while we do the long initialisation
hal.scheduler->suspend_timer_procs();
uint8_t whoami = _register_read(MPUREG_WHOAMI);
if (whoami != 0x71) {
// TODO: we should probably accept multiple chip
// revisions. This is the one on the PXF
hal.console->printf("MPU9250: unexpected WHOAMI 0x%x\n", (unsigned)whoami);
hal.scheduler->panic("MPU9250: bad WHOAMI");
}
uint8_t tries = 0;
do {
bool success = _hardware_init(sample_rate);
if (success) {
hal.scheduler->delay(10);
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("MPU9250: Unable to get semaphore"));
}
uint8_t status = _register_read(MPUREG_INT_STATUS);
if ((status & BIT_RAW_RDY_INT) != 0) {
_spi_sem->give();
break;
} else {
hal.console->println_P(
PSTR("MPU9250 startup failed: no data ready"));
}
_spi_sem->give();
}
if (tries++ > 5) {
hal.scheduler->panic(PSTR("PANIC: failed to boot MPU9250 5 times"));
}
} while (1);
hal.scheduler->resume_timer_procs();
/* read the first lot of data.
* _read_data_transaction requires the spi semaphore to be taken by
* its caller. */
hal.scheduler->delay(10);
if (_spi_sem->take(100)) {
_read_data_transaction();
_spi_sem->give();
}
// start the timer process to read samples
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_MPU9250::_poll_data));
#if MPU9250_DEBUG
_dump_registers();
#endif
return _mpu9250_product_id;
}
/*
determine if a sample is available. We are using a time based
strategy, to avoid time sync issues with the sensor
*/
bool AP_InertialSensor_MPU9250::_sample_available()
{
uint64_t tnow = hal.scheduler->micros64();
while (tnow - _last_sample_usec > _sample_time_usec) {
_have_sample_available = true;
_last_sample_usec += _sample_time_usec;
}
return _have_sample_available;
}
/*
wait for at least one sample to be available from the sensor
*/
bool AP_InertialSensor_MPU9250::wait_for_sample(uint16_t timeout_ms)
{
if (_sample_available()) {
return true;
}
uint64_t start = hal.scheduler->millis64();
while ((hal.scheduler->millis64() - start) < timeout_ms) {
uint64_t tnow = hal.scheduler->micros64();
uint64_t tdelay = (_last_sample_usec + _sample_time_usec) - tnow;
if (tdelay < 100000) {
hal.scheduler->delay_microseconds(tdelay);
}
if (_sample_available()) {
return true;
}
}
return false;
}
/*
update the accel and gyro vectors
*/
bool AP_InertialSensor_MPU9250::update( void )
{
if (!wait_for_sample(1000)) {
return false;
}
_previous_accel[0] = _accel[0];
// pull the data from the timer shared data buffer
uint8_t idx = _shared_data_idx;
_gyro[0] = _shared_data[idx]._gyro_filtered;
_accel[0] = _shared_data[idx]._accel_filtered;
_gyro[0].rotate(_board_orientation);
_gyro[0] *= GYRO_SCALE;
_gyro[0] -= _gyro_offset[0];
_accel[0].rotate(_board_orientation);
_accel[0] *= MPU9250_ACCEL_SCALE_1G;
// rotate for bbone default
_accel[0].rotate(ROTATION_ROLL_180_YAW_90);
_gyro[0].rotate(ROTATION_ROLL_180_YAW_90);
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
// PXF has an additional YAW 180
_accel[0].rotate(ROTATION_YAW_180);
_gyro[0].rotate(ROTATION_YAW_180);
#endif
Vector3f accel_scale = _accel_scale[0].get();
_accel[0].x *= accel_scale.x;
_accel[0].y *= accel_scale.y;
_accel[0].z *= accel_scale.z;
_accel[0] -= _accel_offset[0];
if (_last_filter_hz != _mpu6000_filter) {
_set_filter(_mpu6000_filter);
_last_filter_hz = _mpu6000_filter;
}
_have_sample_available = false;
return true;
}
/*================ HARDWARE FUNCTIONS ==================== */
/**
* Timer process to poll for new data from the MPU9250.
*/
void AP_InertialSensor_MPU9250::_poll_data(void)
{
if (!_spi_sem->take_nonblocking()) {
/*
the semaphore being busy is an expected condition when the
mainline code is calling wait_for_sample() which will
grab the semaphore. We return now and rely on the mainline
code grabbing the latest sample.
*/
return;
}
_read_data_transaction();
_spi_sem->give();
}
/*
read from the data registers and update filtered data
*/
void AP_InertialSensor_MPU9250::_read_data_transaction()
{
/* one resister address followed by seven 2-byte registers */
struct PACKED {
uint8_t cmd;
uint8_t int_status;
uint8_t v[14];
} rx, tx = { cmd : MPUREG_INT_STATUS | 0x80, };
_spi->transaction((const uint8_t *)&tx, (uint8_t *)&rx, sizeof(rx));
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
Vector3f _accel_filtered = Vector3f(_accel_filter_x.apply(int16_val(rx.v, 1)),
_accel_filter_y.apply(int16_val(rx.v, 0)),
_accel_filter_z.apply(-int16_val(rx.v, 2)));
Vector3f _gyro_filtered = Vector3f(_gyro_filter_x.apply(int16_val(rx.v, 5)),
_gyro_filter_y.apply(int16_val(rx.v, 4)),
_gyro_filter_z.apply(-int16_val(rx.v, 6)));
// update the shared buffer
uint8_t idx = _shared_data_idx ^ 1;
_shared_data[idx]._accel_filtered = _accel_filtered;
_shared_data[idx]._gyro_filtered = _gyro_filtered;
_shared_data_idx = idx;
}
/*
read an 8 bit register
*/
uint8_t AP_InertialSensor_MPU9250::_register_read( uint8_t reg )
{
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[2];
uint8_t rx[2];
tx[0] = addr;
tx[1] = 0;
_spi->transaction(tx, rx, 2);
return rx[1];
}
/*
write an 8 bit register
*/
void AP_InertialSensor_MPU9250::_register_write(uint8_t reg, uint8_t val)
{
uint8_t tx[2];
uint8_t rx[2];
tx[0] = reg;
tx[1] = val;
_spi->transaction(tx, rx, 2);
}
/*
set the accel/gyro filter frequency
*/
void AP_InertialSensor_MPU9250::_set_filter(uint8_t filter_hz)
{
if (filter_hz == 0) {
filter_hz = _default_filter_hz;
}
_accel_filter_x.set_cutoff_frequency(1000, filter_hz);
_accel_filter_y.set_cutoff_frequency(1000, filter_hz);
_accel_filter_z.set_cutoff_frequency(1000, filter_hz);
_gyro_filter_x.set_cutoff_frequency(1000, filter_hz);
_gyro_filter_y.set_cutoff_frequency(1000, filter_hz);
_gyro_filter_z.set_cutoff_frequency(1000, filter_hz);
}
/*
initialise the sensor configuration registers
*/
bool AP_InertialSensor_MPU9250::_hardware_init(Sample_rate sample_rate)
{
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("MPU9250: Unable to get semaphore"));
}
// initially run the bus at low speed
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
// Chip reset
uint8_t tries;
for (tries = 0; tries<5; tries++) {
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
hal.scheduler->delay(100);
// Wake up device and select GyroZ clock. Note that the
// MPU6000 starts up in sleep mode, and it can take some time
// for it to come out of sleep
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
hal.scheduler->delay(5);
// check it has woken up
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
break;
}
#if MPU9250_DEBUG
_dump_registers();
#endif
}
if (tries == 5) {
hal.console->println_P(PSTR("Failed to boot MPU9250 5 times"));
_spi_sem->give();
return false;
}
_register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode
// Disable I2C bus (recommended on datasheet)
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
// sample rate and filtering
// to minimise the effects of aliasing we choose a filter
// that is less than half of the sample rate
switch (sample_rate) {
case RATE_50HZ:
_default_filter_hz = 15;
_sample_time_usec = 20000;
break;
case RATE_100HZ:
_default_filter_hz = 30;
_sample_time_usec = 10000;
break;
case RATE_200HZ:
_default_filter_hz = 30;
_sample_time_usec = 5000;
break;
case RATE_400HZ:
default:
_default_filter_hz = 30;
_sample_time_usec = 2500;
break;
}
// used a fixed filter of 42Hz on the sensor, then filter using
// the 2-pole software filter
_register_write(MPUREG_CONFIG, BITS_DLPF_CFG_42HZ);
// set sample rate to 1kHz, and use the 2 pole filter to give the
// desired rate
_register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_1000HZ);
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000ยบ/s
// RM-MPU-9250A-00.pdf, pg. 15, select accel full scale 8g
_register_write(MPUREG_ACCEL_CONFIG,2<<3);
// configure interrupt to fire when new data arrives
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
// clear interrupt on any read, and hold the data ready pin high
// until we clear the interrupt
_register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
// now that we have initialised, we set the SPI bus speed to high
// (8MHz on APM2)
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
_spi_sem->give();
return true;
}
// return the MPUXk gyro drift rate in radian/s/s
// note that this is much better than the oilpan gyros
float AP_InertialSensor_MPU9250::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
#if MPU9250_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_MPU9250::_dump_registers(void)
{
hal.console->println_P(PSTR("MPU9250 registers"));
for (uint8_t reg=0; reg<=126; reg++) {
uint8_t v = _register_read(reg);
hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v);
if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) {
hal.console->println();
}
}
hal.console->println();
}
#endif
// get_delta_time returns the time period in seconds overwhich the
// sensor data was collected. We just use a constant time, to decouple
// the 9250 timing from the main scheduler
float AP_InertialSensor_MPU9250::get_delta_time() const
{
return _sample_time_usec * 1.0e-6f;
}
#endif // CONFIG_HAL_BOARD