/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define THISFIRMWARE "ArduPlane V2.68" /* * Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Amilcar Lucas, Gregory Fletcher * Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier, Yury MonZon * Please contribute your ideas! * * * This firmware is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include // ArduPilot GPS library #include // ArduPilot barometer library #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // ArduPilot Mega Analog to Digital Converter Library #include #include // Inertial Sensor Library #include // ArduPilot Mega DCM Library #include // PID library #include // RC Channel Library #include // Range finder library #include // Filter library #include // APM FIFO Buffer #include // APM relay #include // Photo or video camera #include #include #include #include #include // MAVLink GCS definitions #include // Camera/Antenna mount #include // ArduPilot Mega Declination Helper Library #include #include // optional new controller library #if APM_CONTROL == ENABLED #include #endif // Pre-AP_HAL compatibility #include "compat.h" // Configuration #include "config.h" // Local modules #include "defines.h" #include "Parameters.h" #include "GCS.h" #include #include #include AP_HAL::BetterStream* cliSerial; const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; //////////////////////////////////////////////////////////////////////////////// // Outback Challenge Failsafe Support //////////////////////////////////////////////////////////////////////////////// #if OBC_FAILSAFE == ENABLED APM_OBC obc; #endif //////////////////////////////////////////////////////////////////////////////// // the rate we run the main loop at //////////////////////////////////////////////////////////////////////////////// static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_50HZ; //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // static Parameters g; //////////////////////////////////////////////////////////////////////////////// // prototypes static void update_events(void); //////////////////////////////////////////////////////////////////////////////// // DataFlash //////////////////////////////////////////////////////////////////////////////// #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 DataFlash_APM1 DataFlash; #elif CONFIG_HAL_BOARD == HAL_BOARD_APM2 DataFlash_APM2 DataFlash; #elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL DataFlash_SITL DataFlash; #endif //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. static GPS *g_gps; // flight modes convenience array static AP_Int8 *flight_modes = &g.flight_mode1; #if HIL_MODE == HIL_MODE_DISABLED // real sensors #if CONFIG_ADC == ENABLED static AP_ADC_ADS7844 adc; #endif # if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; AP_InertialSensor_Stub ins; SITL sitl; #else #if CONFIG_BARO == AP_BARO_BMP085 static AP_Baro_BMP085 barometer; #elif CONFIG_BARO == AP_BARO_MS5611 static AP_Baro_MS5611 barometer; #endif static AP_Compass_HMC5843 compass; #endif // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver(); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver(); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver(); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver(); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19 AP_GPS_MTK19 g_gps_driver(); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver(); #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL # if CONFIG_INS_TYPE == CONFIG_INS_MPU6000 AP_InertialSensor_MPU6000 ins; # elif CONFIG_HAL_BOARD != HAL_BOARD_AVR_SITL AP_InertialSensor_Oilpan ins( &adc ); #endif // CONFIG_INS_TYPE AP_AHRS_DCM ahrs(&ins, g_gps); #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver; AP_InertialSensor_Stub ins; AP_AHRS_DCM ahrs(&ins, g_gps); #elif HIL_MODE == HIL_MODE_ATTITUDE AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver; AP_InertialSensor_Stub ins; AP_AHRS_HIL ahrs(&ins, g_gps); #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE // Training mode static bool training_manual_roll; // user has manual roll control static bool training_manual_pitch; // user has manual pitch control //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// GCS_MAVLINK gcs0; GCS_MAVLINK gcs3; //////////////////////////////////////////////////////////////////////////////// // Analog Inputs //////////////////////////////////////////////////////////////////////////////// AP_HAL::AnalogSource *pitot_analog_source; // a pin for reading the receiver RSSI voltage. The scaling by 0.25 // is to take the 0 to 1024 range down to an 8 bit range for MAVLink AP_HAL::AnalogSource *rssi_analog_source; AP_HAL::AnalogSource *vcc_pin; AP_HAL::AnalogSource * batt_volt_pin; AP_HAL::AnalogSource * batt_curr_pin; //////////////////////////////////////////////////////////////////////////////// // Relay //////////////////////////////////////////////////////////////////////////////// AP_Relay relay; // Camera #if CAMERA == ENABLED AP_Camera camera(&relay); #endif //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// // APM2 only #if USB_MUX_PIN > 0 static bool usb_connected; #endif /* Radio values * Channel assignments * 1 Ailerons * 2 Elevator * 3 Throttle * 4 Rudder * 5 Aux5 * 6 Aux6 * 7 Aux7 * 8 Aux8/Mode * Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. * See libraries/RC_Channel/RC_Channel_aux.h for more information */ //////////////////////////////////////////////////////////////////////////////// // Radio //////////////////////////////////////////////////////////////////////////////// // This is the state of the flight control system // There are multiple states defined such as MANUAL, FBW-A, AUTO enum FlightMode control_mode = INITIALISING; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch uint8_t oldSwitchPosition; // This is used to enable the inverted flight feature bool inverted_flight = false; // These are trim values used for elevon control // For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon static uint16_t elevon1_trim = 1500; static uint16_t elevon2_trim = 1500; // These are used in the calculation of elevon1_trim and elevon2_trim static uint16_t ch1_temp = 1500; static uint16_t ch2_temp = 1500; // These are values received from the GCS if the user is using GCS joystick // control and are substituted for the values coming from the RC radio static int16_t rc_override[8] = {0,0,0,0,0,0,0,0}; // A flag if GCS joystick control is in use static bool rc_override_active = false; //////////////////////////////////////////////////////////////////////////////// // Failsafe //////////////////////////////////////////////////////////////////////////////// // A tracking variable for type of failsafe active // Used for failsafe based on loss of RC signal or GCS signal static int16_t failsafe; // Used to track if the value on channel 3 (throtttle) has fallen below the failsafe threshold // RC receiver should be set up to output a low throttle value when signal is lost static bool ch3_failsafe; // A timer used to help recovery from unusual attitudes. If we enter an unusual attitude // while in autonomous flight this variable is used to hold roll at 0 for a recovery period static uint8_t crash_timer; // the time when the last HEARTBEAT message arrived from a GCS static uint32_t last_heartbeat_ms; // A timer used to track how long we have been in a "short failsafe" condition due to loss of RC signal static uint32_t ch3_failsafe_timer = 0; //////////////////////////////////////////////////////////////////////////////// // LED output //////////////////////////////////////////////////////////////////////////////// // state of the GPS light (on/off) static bool GPS_light; //////////////////////////////////////////////////////////////////////////////// // GPS variables //////////////////////////////////////////////////////////////////////////////// // This is used to scale GPS values for EEPROM storage // 10^7 times Decimal GPS means 1 == 1cm // This approximation makes calculations integer and it's easy to read static const float t7 = 10000000.0; // We use atan2 and other trig techniques to calaculate angles // A counter used to count down valid gps fixes to allow the gps estimate to settle // before recording our home position (and executing a ground start if we booted with an air start) static uint8_t ground_start_count = 5; // Used to compute a speed estimate from the first valid gps fixes to decide if we are // on the ground or in the air. Used to decide if a ground start is appropriate if we // booted with an air start. static int16_t ground_start_avg; // true if we have a position estimate from AHRS static bool have_position; //////////////////////////////////////////////////////////////////////////////// // Location & Navigation //////////////////////////////////////////////////////////////////////////////// // Constants const float radius_of_earth = 6378100; // meters const float gravity = 9.81; // meters/ sec^2 // This is the currently calculated direction to fly. // deg * 100 : 0 to 360 static int32_t nav_bearing_cd; // This is the direction to the next waypoint or loiter center // deg * 100 : 0 to 360 static int32_t target_bearing_cd; //This is the direction from the last waypoint to the next waypoint // deg * 100 : 0 to 360 static int32_t crosstrack_bearing_cd; // Direction held during phases of takeoff and landing // deg * 100 dir of plane, A value of -1 indicates the course has not been set/is not in use static int32_t hold_course = -1; // deg * 100 dir of plane // There may be two active commands in Auto mode. // This indicates the active navigation command by index number static uint8_t nav_command_index; // This indicates the active non-navigation command by index number static uint8_t non_nav_command_index; // This is the command type (eg navigate to waypoint) of the active navigation command static uint8_t nav_command_ID = NO_COMMAND; static uint8_t non_nav_command_ID = NO_COMMAND; //////////////////////////////////////////////////////////////////////////////// // Airspeed //////////////////////////////////////////////////////////////////////////////// // The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met. // Also used for flap deployment criteria. Centimeters per second. static int32_t target_airspeed_cm; // The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second. static float airspeed_error_cm; // The calculated total energy error (kinetic (altitude) plus potential (airspeed)). // Used by the throttle controller static int32_t energy_error; // kinetic portion of energy error (m^2/s^2) static int32_t airspeed_energy_error; // An amount that the airspeed should be increased in auto modes based on the user positioning the // throttle stick in the top half of the range. Centimeters per second. static int16_t airspeed_nudge_cm; // Similar to airspeed_nudge, but used when no airspeed sensor. // 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel static int16_t throttle_nudge = 0; // receiver RSSI static uint8_t receiver_rssi; //////////////////////////////////////////////////////////////////////////////// // Ground speed //////////////////////////////////////////////////////////////////////////////// // The amount current ground speed is below min ground speed. Centimeters per second static int32_t groundspeed_undershoot = 0; //////////////////////////////////////////////////////////////////////////////// // Location Errors //////////////////////////////////////////////////////////////////////////////// // Difference between current bearing and desired bearing. Hundredths of a degree static int32_t bearing_error_cd; // Difference between current altitude and desired altitude. Centimeters static int32_t altitude_error_cm; // Distance perpandicular to the course line that we are off trackline. Meters static float crosstrack_error; //////////////////////////////////////////////////////////////////////////////// // Battery Sensors //////////////////////////////////////////////////////////////////////////////// // Battery pack 1 voltage. Initialized above the low voltage threshold to pre-load the filter and prevent low voltage events at startup. static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery pack 1 instantaneous currrent draw. Amperes static float current_amps1; // Totalized current (Amp-hours) from battery 1 static float current_total1; // To Do - Add support for second battery pack //static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery 2 Voltage, initialized above threshold for filter //static float current_amps2; // Current (Amperes) draw from battery 2 //static float current_total2; // Totalized current (Amp-hours) from battery 2 //////////////////////////////////////////////////////////////////////////////// // Airspeed Sensors //////////////////////////////////////////////////////////////////////////////// AP_Airspeed airspeed; //////////////////////////////////////////////////////////////////////////////// // Altitude Sensor variables //////////////////////////////////////////////////////////////////////////////// // flight mode specific //////////////////////////////////////////////////////////////////////////////// // Flag for using gps ground course instead of INS yaw. Set false when takeoff command in process. static bool takeoff_complete = true; // Flag to indicate if we have landed. //Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown static bool land_complete; // Altitude threshold to complete a takeoff command in autonomous modes. Centimeters static int32_t takeoff_altitude; // Minimum pitch to hold during takeoff command execution. Hundredths of a degree static int16_t takeoff_pitch_cd; // this controls throttle suppression in auto modes static bool throttle_suppressed; //////////////////////////////////////////////////////////////////////////////// // Loiter management //////////////////////////////////////////////////////////////////////////////// // Previous target bearing. Used to calculate loiter rotations. Hundredths of a degree static int32_t old_target_bearing_cd; // Total desired rotation in a loiter. Used for Loiter Turns commands. Degrees static int32_t loiter_total; // The amount in degrees we have turned since recording old_target_bearing static int16_t loiter_delta; // Total rotation in a loiter. Used for Loiter Turns commands and to check for missed waypoints. Degrees static int32_t loiter_sum; // The amount of time we have been in a Loiter. Used for the Loiter Time command. Milliseconds. static uint32_t loiter_time_ms; // The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds. static uint32_t loiter_time_max_ms; //////////////////////////////////////////////////////////////////////////////// // Navigation control variables //////////////////////////////////////////////////////////////////////////////// // The instantaneous desired bank angle. Hundredths of a degree static int32_t nav_roll_cd; // The instantaneous desired pitch angle. Hundredths of a degree static int32_t nav_pitch_cd; //////////////////////////////////////////////////////////////////////////////// // Waypoint distances //////////////////////////////////////////////////////////////////////////////// // Distance between plane and next waypoint. Meters // is not static because AP_Camera uses it int32_t wp_distance; // Distance between previous and next waypoint. Meters static int32_t wp_totalDistance; // event control state enum event_type { EVENT_TYPE_RELAY=0, EVENT_TYPE_SERVO=1 }; static struct { enum event_type type; // when the event was started in ms uint32_t start_time_ms; // how long to delay the next firing of event in millis uint16_t delay_ms; // how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles int16_t repeat; // RC channel for servos uint8_t rc_channel; // PWM for servos uint16_t servo_value; // the value used to cycle events (alternate value to event_value) uint16_t undo_value; } event_state; //////////////////////////////////////////////////////////////////////////////// // Conditional command //////////////////////////////////////////////////////////////////////////////// // A value used in condition commands (eg delay, change alt, etc.) // For example in a change altitude command, it is the altitude to change to. static int32_t condition_value; // A starting value used to check the status of a conditional command. // For example in a delay command the condition_start records that start time for the delay static uint32_t condition_start; // A value used in condition commands. For example the rate at which to change altitude. static int16_t condition_rate; //////////////////////////////////////////////////////////////////////////////// // 3D Location vectors // Location structure defined in AP_Common //////////////////////////////////////////////////////////////////////////////// // The home location used for RTL. The location is set when we first get stable GPS lock static struct Location home; // Flag for if we have g_gps lock and have set the home location static bool home_is_set; // The location of the previous waypoint. Used for track following and altitude ramp calculations static struct Location prev_WP; // The plane's current location static struct Location current_loc; // The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations. static struct Location next_WP; // The location of the active waypoint in Guided mode. static struct Location guided_WP; // The location structure information from the Nav command being processed static struct Location next_nav_command; // The location structure information from the Non-Nav command being processed static struct Location next_nonnav_command; //////////////////////////////////////////////////////////////////////////////// // Altitude / Climb rate control //////////////////////////////////////////////////////////////////////////////// // The current desired altitude. Altitude is linearly ramped between waypoints. Centimeters static int32_t target_altitude_cm; // Altitude difference between previous and current waypoint. Centimeters static int32_t offset_altitude_cm; //////////////////////////////////////////////////////////////////////////////// // INS variables //////////////////////////////////////////////////////////////////////////////// // The main loop execution time. Seconds //This is the time between calls to the DCM algorithm and is the Integration time for the gyros. static float G_Dt = 0.02; //////////////////////////////////////////////////////////////////////////////// // Performance monitoring //////////////////////////////////////////////////////////////////////////////// // Timer used to accrue data and trigger recording of the performanc monitoring log message static int32_t perf_mon_timer; // The maximum main loop execution time recorded in the current performance monitoring interval static int16_t G_Dt_max = 0; // The number of gps fixes recorded in the current performance monitoring interval static int16_t gps_fix_count = 0; // A variable used by developers to track performanc metrics. // Currently used to record the number of GCS heartbeat messages received static int16_t pmTest1 = 0; //////////////////////////////////////////////////////////////////////////////// // System Timers //////////////////////////////////////////////////////////////////////////////// // Time in miliseconds of start of main control loop. Milliseconds static uint32_t fast_loopTimer_ms; // Time Stamp when fast loop was complete. Milliseconds static uint32_t fast_loopTimeStamp_ms; // Number of milliseconds used in last main loop cycle static uint8_t delta_ms_fast_loop; // Counter of main loop executions. Used for performance monitoring and failsafe processing static uint16_t mainLoop_count; // Time in miliseconds of start of medium control loop. Milliseconds static uint32_t medium_loopTimer_ms; // Counters for branching from main control loop to slower loops static uint8_t medium_loopCounter; // Number of milliseconds used in last medium loop cycle static uint8_t delta_ms_medium_loop; // Counters for branching from medium control loop to slower loops static uint8_t slow_loopCounter; // Counter to trigger execution of very low rate processes static uint8_t superslow_loopCounter; // Counter to trigger execution of 1 Hz processes static uint8_t counter_one_herz; // % MCU cycles used static float load; // Camera/Antenna mount tracking and stabilisation stuff // -------------------------------------- #if MOUNT == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. // mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? AP_Mount camera_mount(¤t_loc, g_gps, &ahrs, 0); #endif #if MOUNT2 == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. // mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? AP_Mount camera_mount2(¤t_loc, g_gps, &ahrs, 1); #endif #if CAMERA == ENABLED //pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82) #endif //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// // setup the var_info table AP_Param param_loader(var_info, WP_START_BYTE); void setup() { cliSerial = hal.console; // load the default values of variables listed in var_info[] AP_Param::setup_sketch_defaults(); rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE, 0.25); #if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC pitot_analog_source = new AP_ADC_AnalogSource( &adc, CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0); #elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN pitot_analog_source = hal.analogin->channel(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0); #endif vcc_pin = hal.analogin->channel(ANALOG_INPUT_BOARD_VCC); batt_volt_pin = hal.analogin->channel(g.battery_volt_pin); batt_curr_pin = hal.analogin->channel(g.battery_curr_pin); airspeed.init(pitot_analog_source); memcheck_init(); init_ardupilot(); } void loop() { // We want this to execute at 50Hz, but synchronised with the gyro/accel uint16_t num_samples = ins.num_samples_available(); if (num_samples >= 1) { delta_ms_fast_loop = millis() - fast_loopTimer_ms; load = (float)(fast_loopTimeStamp_ms - fast_loopTimer_ms)/delta_ms_fast_loop; G_Dt = (float)delta_ms_fast_loop / 1000.f; fast_loopTimer_ms = millis(); mainLoop_count++; // Execute the fast loop // --------------------- fast_loop(); // Execute the medium loop // ----------------------- medium_loop(); counter_one_herz++; if(counter_one_herz == 50) { one_second_loop(); counter_one_herz = 0; } if (millis() - perf_mon_timer > 20000) { if (mainLoop_count != 0) { if (g.log_bitmask & MASK_LOG_PM) Log_Write_Performance(); resetPerfData(); } } fast_loopTimeStamp_ms = millis(); } else if (millis() - fast_loopTimeStamp_ms < 19) { // less than 19ms has passed. We have at least one millisecond // of free time. The most useful thing to do with that time is // to accumulate some sensor readings, specifically the // compass, which is often very noisy but is not interrupt // driven, so it can't accumulate readings by itself if (g.compass_enabled) { compass.accumulate(); } } } // Main loop 50Hz static void fast_loop() { // This is the fast loop - we want it to execute at 50Hz if possible // ----------------------------------------------------------------- if (delta_ms_fast_loop > G_Dt_max) G_Dt_max = delta_ms_fast_loop; // Read radio // ---------- read_radio(); // try to send any deferred messages if the serial port now has // some space available gcs_send_message(MSG_RETRY_DEFERRED); // check for loss of control signal failsafe condition // ------------------------------------ check_short_failsafe(); #if HIL_MODE == HIL_MODE_SENSORS // update hil before AHRS update gcs_update(); #endif ahrs.update(); // uses the yaw from the DCM to give more accurate turns calc_bearing_error(); if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Log_Write_Attitude(ahrs.roll_sensor, ahrs.pitch_sensor, ahrs.yaw_sensor); if (g.log_bitmask & MASK_LOG_RAW) Log_Write_Raw(); // inertial navigation // ------------------ #if INERTIAL_NAVIGATION == ENABLED // TODO: implement inertial nav function inertialNavigation(); #endif // custom code/exceptions for flight modes // --------------------------------------- update_current_flight_mode(); // apply desired roll, pitch and yaw to the plane // ---------------------------------------------- if (control_mode > MANUAL) stabilize(); // write out the servo PWM values // ------------------------------ set_servos(); gcs_update(); gcs_data_stream_send(); } static void medium_loop() { #if MOUNT == ENABLED camera_mount.update_mount_position(); #endif #if MOUNT2 == ENABLED camera_mount2.update_mount_position(); #endif #if CAMERA == ENABLED camera.trigger_pic_cleanup(); #endif // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS //------------------------------- case 0: medium_loopCounter++; update_GPS(); calc_gndspeed_undershoot(); #if HIL_MODE != HIL_MODE_ATTITUDE if (g.compass_enabled && compass.read()) { ahrs.set_compass(&compass); compass.null_offsets(); } else { ahrs.set_compass(NULL); } #endif break; // This case performs some navigation computations //------------------------------------------------ case 1: medium_loopCounter++; // Read 6-position switch on radio // ------------------------------- read_control_switch(); // calculate the plane's desired bearing // ------------------------------------- navigate(); break; // command processing //------------------------------ case 2: medium_loopCounter++; // Read Airspeed // ------------- #if HIL_MODE != HIL_MODE_ATTITUDE if (airspeed.enabled()) { read_airspeed(); } #endif read_receiver_rssi(); // Read altitude from sensors // ------------------ update_alt(); // altitude smoothing // ------------------ if (control_mode != FLY_BY_WIRE_B) calc_altitude_error(); // perform next command // -------------------- update_commands(); break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: medium_loopCounter++; if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST)) Log_Write_Attitude(ahrs.roll_sensor, ahrs.pitch_sensor, ahrs.yaw_sensor); if (g.log_bitmask & MASK_LOG_CTUN) Log_Write_Control_Tuning(); if (g.log_bitmask & MASK_LOG_NTUN) Log_Write_Nav_Tuning(); if (g.log_bitmask & MASK_LOG_GPS) Log_Write_GPS(g_gps->time, current_loc.lat, current_loc.lng, g_gps->altitude, current_loc.alt, (long) g_gps->ground_speed, g_gps->ground_course, g_gps->fix, g_gps->num_sats); break; // This case controls the slow loop //--------------------------------- case 4: medium_loopCounter = 0; delta_ms_medium_loop = millis() - medium_loopTimer_ms; medium_loopTimer_ms = millis(); if (g.battery_monitoring != 0) { read_battery(); } slow_loop(); #if OBC_FAILSAFE == ENABLED // perform OBC failsafe checks obc.check(OBC_MODE(control_mode), last_heartbeat_ms, g_gps ? g_gps->last_fix_time : 0); #endif break; } } static void slow_loop() { // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter) { case 0: slow_loopCounter++; check_long_failsafe(); superslow_loopCounter++; if(superslow_loopCounter >=200) { // 200 = Execute every minute #if HIL_MODE != HIL_MODE_ATTITUDE if(g.compass_enabled) { compass.save_offsets(); } #endif superslow_loopCounter = 0; } break; case 1: slow_loopCounter++; #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8); #else update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_9, &g.rc_10, &g.rc_11); #endif enable_aux_servos(); #if MOUNT == ENABLED camera_mount.update_mount_type(); #endif #if MOUNT2 == ENABLED camera_mount2.update_mount_type(); #endif break; case 2: slow_loopCounter = 0; update_events(); mavlink_system.sysid = g.sysid_this_mav; // This is just an ugly hack to keep mavlink_system.sysid sync'd with our parameter check_usb_mux(); break; } } static void one_second_loop() { if (g.log_bitmask & MASK_LOG_CUR) Log_Write_Current(); // send a heartbeat gcs_send_message(MSG_HEARTBEAT); } static void update_GPS(void) { g_gps->update(); update_GPS_light(); // get position from AHRS have_position = ahrs.get_position(¤t_loc); if (g_gps->new_data && g_gps->fix) { g_gps->new_data = false; // for performance // --------------- gps_fix_count++; if(ground_start_count > 1) { ground_start_count--; ground_start_avg += g_gps->ground_speed; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { ground_start_count = 5; } else { if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT) { startup_ground(); if (g.log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); init_home(); } else if (ENABLE_AIR_START == 0) { init_home(); } if (g.compass_enabled) { // Set compass declination automatically compass.set_initial_location(g_gps->latitude, g_gps->longitude); } ground_start_count = 0; } } // see if we've breached the geo-fence geofence_check(false); } } static void update_current_flight_mode(void) { if(control_mode == AUTO) { crash_checker(); switch(nav_command_ID) { case MAV_CMD_NAV_TAKEOFF: if (hold_course != -1 && g.rudder_steer == 0) { calc_nav_roll(); } else { nav_roll_cd = 0; } if (alt_control_airspeed()) { calc_nav_pitch(); if (nav_pitch_cd < takeoff_pitch_cd) nav_pitch_cd = takeoff_pitch_cd; } else { nav_pitch_cd = (g_gps->ground_speed / (float)g.airspeed_cruise_cm) * takeoff_pitch_cd; nav_pitch_cd = constrain_int32(nav_pitch_cd, 500, takeoff_pitch_cd); } #if APM_CONTROL == DISABLED float aspeed; if (ahrs.airspeed_estimate(&aspeed)) { // don't use a pitch/roll integrators during takeoff if we are // below minimum speed if (aspeed < g.flybywire_airspeed_min) { g.pidServoPitch.reset_I(); g.pidServoRoll.reset_I(); } } #endif // max throttle for takeoff g.channel_throttle.servo_out = g.throttle_max; break; case MAV_CMD_NAV_LAND: if (g.rudder_steer == 0 || !land_complete) { calc_nav_roll(); } else { nav_roll_cd = 0; } if (land_complete) { // hold pitch constant in final approach nav_pitch_cd = g.land_pitch_cd; } else { calc_nav_pitch(); if (!alt_control_airspeed()) { // when not under airspeed control, don't allow // down pitch in landing nav_pitch_cd = constrain_int32(nav_pitch_cd, 0, nav_pitch_cd); } } calc_throttle(); if (land_complete) { // we are in the final stage of a landing - force // zero throttle g.channel_throttle.servo_out = 0; } break; default: // we are doing normal AUTO flight, the special cases // are for takeoff and landing hold_course = -1; land_complete = false; calc_nav_roll(); calc_nav_pitch(); calc_throttle(); break; } }else{ // hold_course is only used in takeoff and landing hold_course = -1; switch(control_mode) { case RTL: case LOITER: case GUIDED: crash_checker(); calc_nav_roll(); calc_nav_pitch(); calc_throttle(); break; case TRAINING: { training_manual_roll = false; training_manual_pitch = false; // if the roll is past the set roll limit, then // we set target roll to the limit if (ahrs.roll_sensor >= g.roll_limit_cd) { nav_roll_cd = g.roll_limit_cd; } else if (ahrs.roll_sensor <= -g.roll_limit_cd) { nav_roll_cd = -g.roll_limit_cd; } else { training_manual_roll = true; nav_roll_cd = 0; } // if the pitch is past the set pitch limits, then // we set target pitch to the limit if (ahrs.pitch_sensor >= g.pitch_limit_max_cd) { nav_pitch_cd = g.pitch_limit_max_cd; } else if (ahrs.pitch_sensor <= g.pitch_limit_min_cd) { nav_pitch_cd = g.pitch_limit_min_cd; } else { training_manual_pitch = true; nav_pitch_cd = 0; } if (inverted_flight) { nav_pitch_cd = -nav_pitch_cd; } break; } case FLY_BY_WIRE_A: { // set nav_roll and nav_pitch using sticks nav_roll_cd = g.channel_roll.norm_input() * g.roll_limit_cd; float pitch_input = g.channel_pitch.norm_input(); if (pitch_input > 0) { nav_pitch_cd = pitch_input * g.pitch_limit_max_cd; } else { nav_pitch_cd = -(pitch_input * g.pitch_limit_min_cd); } nav_pitch_cd = constrain_int32(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get()); if (inverted_flight) { nav_pitch_cd = -nav_pitch_cd; } break; } case FLY_BY_WIRE_B: // Substitute stick inputs for Navigation control output // We use g.pitch_limit_min because its magnitude is // normally greater than g.pitch_limit_max // Thanks to Yury MonZon for the altitude limit code! nav_roll_cd = g.channel_roll.norm_input() * g.roll_limit_cd; float elevator_input; elevator_input = g.channel_pitch.norm_input(); if (g.flybywire_elev_reverse) { elevator_input = -elevator_input; } if ((adjusted_altitude_cm() >= home.alt+g.FBWB_min_altitude_cm) || (g.FBWB_min_altitude_cm == 0)) { altitude_error_cm = elevator_input * g.pitch_limit_min_cd; } else { altitude_error_cm = (home.alt + g.FBWB_min_altitude_cm) - adjusted_altitude_cm(); if (elevator_input < 0) { altitude_error_cm += elevator_input * g.pitch_limit_min_cd; } } calc_throttle(); calc_nav_pitch(); break; case STABILIZE: nav_roll_cd = 0; nav_pitch_cd = 0; // throttle is passthrough break; case CIRCLE: // we have no GPS installed and have lost radio contact // or we just want to fly around in a gentle circle w/o GPS // ---------------------------------------------------- nav_roll_cd = g.roll_limit_cd / 3; nav_pitch_cd = 0; if (failsafe != FAILSAFE_NONE) { g.channel_throttle.servo_out = g.throttle_cruise; } break; case MANUAL: // servo_out is for Sim control only // --------------------------------- g.channel_roll.servo_out = g.channel_roll.pwm_to_angle(); g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle(); g.channel_rudder.servo_out = g.channel_rudder.pwm_to_angle(); break; //roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000 case INITIALISING: case AUTO: // handled elsewhere break; } } } static void update_navigation() { // wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS // ------------------------------------------------------------------------ // distance and bearing calcs only switch(control_mode) { case AUTO: verify_commands(); break; case LOITER: case RTL: case GUIDED: update_loiter(); calc_bearing_error(); break; case MANUAL: case STABILIZE: case TRAINING: case INITIALISING: case FLY_BY_WIRE_A: case FLY_BY_WIRE_B: case CIRCLE: // nothing to do break; } } static void update_alt() { #if HIL_MODE == HIL_MODE_ATTITUDE current_loc.alt = g_gps->altitude; #else // this function is in place to potentially add a sonar sensor in the future //altitude_sensor = BARO; if (barometer.healthy) { current_loc.alt = (1 - g.altitude_mix) * g_gps->altitude; // alt_MSL centimeters (meters * 100) current_loc.alt += g.altitude_mix * (read_barometer() + home.alt); } else if (g_gps->fix) { current_loc.alt = g_gps->altitude; // alt_MSL centimeters (meters * 100) } #endif geofence_check(true); // Calculate new climb rate //if(medium_loopCounter == 0 && slow_loopCounter == 0) // add_altitude_data(millis() / 100, g_gps->altitude / 10); } AP_HAL_MAIN();