// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
//
//
// total up and check overflow
// check size of group var_info
/// @file AP_Param.cpp
/// @brief The AP variable store.
#include
#include
#include
#include
#include
extern const AP_HAL::HAL &hal;
#define ENABLE_DEBUG 0
#if ENABLE_DEBUG
# define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0)
#else
# define Debug(fmt, args ...)
#endif
// some useful progmem macros
#define PGM_UINT8(addr) pgm_read_byte((const prog_char *)addr)
#define PGM_UINT16(addr) pgm_read_word((const uint16_t *)addr)
#define PGM_FLOAT(addr) pgm_read_float((const float *)addr)
#define PGM_POINTER(addr) pgm_read_pointer((const void *)addr)
// the 'GROUP_ID' of a element of a group is the 18 bit identifier
// used to distinguish between this element of the group and other
// elements of the same group. It is calculated using a bit shift per
// level of nesting, so the first level of nesting gets 6 bits the 2nd
// level gets the next 6 bits, and the 3rd level gets the last 6
// bits. This limits groups to having at most 64 elements.
#define GROUP_ID(grpinfo, base, i, shift) ((base)+(((uint16_t)PGM_UINT8(&grpinfo[i].idx))<<(shift)))
// Note about AP_Vector3f handling.
// The code has special cases for AP_Vector3f to allow it to be viewed
// as both a single 3 element vector and as a set of 3 AP_Float
// variables. This is done to make it possible for MAVLink to see
// vectors as parameters, which allows users to save their compass
// offsets in MAVLink parameter files. The code involves quite a few
// special cases which could be generalised to any vector/matrix type
// if we end up needing this behaviour for other than AP_Vector3f
// static member variables for AP_Param.
//
// number of rows in the _var_info[] table
uint8_t AP_Param::_num_vars;
// storage and naming information about all types that can be saved
const AP_Param::Info *AP_Param::_var_info;
// storage object
StorageAccess AP_Param::_storage(StorageManager::StorageParam);
// write to EEPROM
void AP_Param::eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size)
{
_storage.write_block(ofs, ptr, size);
}
// write a sentinal value at the given offset
void AP_Param::write_sentinal(uint16_t ofs)
{
struct Param_header phdr;
phdr.type = _sentinal_type;
phdr.key = _sentinal_key;
phdr.group_element = _sentinal_group;
eeprom_write_check(&phdr, ofs, sizeof(phdr));
}
// erase all EEPROM variables by re-writing the header and adding
// a sentinal
void AP_Param::erase_all(void)
{
struct EEPROM_header hdr;
Debug("erase_all");
// write the header
hdr.magic[0] = k_EEPROM_magic0;
hdr.magic[1] = k_EEPROM_magic1;
hdr.revision = k_EEPROM_revision;
hdr.spare = 0;
eeprom_write_check(&hdr, 0, sizeof(hdr));
// add a sentinal directly after the header
write_sentinal(sizeof(struct EEPROM_header));
}
// validate a group info table
bool AP_Param::check_group_info(const struct AP_Param::GroupInfo * group_info,
uint16_t * total_size,
uint8_t group_shift,
uint8_t prefix_length)
{
uint8_t type;
int8_t max_idx = -1;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
// a nested group
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
if (group_shift + _group_level_shift >= _group_bits) {
Debug("double group nesting in %S", group_info[i].name);
return false;
}
if (ginfo == NULL ||
!check_group_info(ginfo, total_size, group_shift + _group_level_shift, prefix_length + strlen_P(group_info[i].name))) {
return false;
}
continue;
}
#endif // AP_NESTED_GROUPS_ENABLED
uint8_t idx = PGM_UINT8(&group_info[i].idx);
if (idx >= (1<<_group_level_shift)) {
Debug("idx too large (%u) in %S", idx, group_info[i].name);
return false;
}
if ((int8_t)idx <= max_idx) {
Debug("indexes must be in increasing order in %S", group_info[i].name);
return false;
}
max_idx = (int8_t)idx;
uint8_t size = type_size((enum ap_var_type)type);
if (size == 0) {
Debug("invalid type in %S", group_info[i].name);
return false;
}
if (prefix_length + strlen_P(group_info[i].name) > 16) {
Debug("suffix is too long in %S", group_info[i].name);
return false;
}
(*total_size) += size + sizeof(struct Param_header);
}
return true;
}
// check for duplicate key values
bool AP_Param::duplicate_key(uint8_t vindex, uint8_t key)
{
for (uint8_t i=vindex+1; i<_num_vars; i++) {
uint8_t key2 = PGM_UINT8(&_var_info[i].key);
if (key2 == key) {
// no duplicate keys allowed
return true;
}
}
return false;
}
// validate the _var_info[] table
bool AP_Param::check_var_info(void)
{
uint16_t total_size = sizeof(struct EEPROM_header);
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
uint8_t key = PGM_UINT8(&_var_info[i].key);
if (type == AP_PARAM_GROUP) {
if (i == 0) {
// first element can't be a group, for first() call
return false;
}
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
if (group_info == NULL ||
!check_group_info(group_info, &total_size, 0, strlen_P(_var_info[i].name))) {
return false;
}
} else {
uint8_t size = type_size((enum ap_var_type)type);
if (size == 0) {
// not a valid type - the top level list can't contain
// AP_PARAM_NONE
return false;
}
total_size += size + sizeof(struct Param_header);
}
if (duplicate_key(i, key)) {
return false;
}
}
// we no longer check if total_size is larger than _eeprom_size,
// as we allow for more variables than could fit, relying on not
// saving default values
return true;
}
// setup the _var_info[] table
bool AP_Param::setup(void)
{
struct EEPROM_header hdr;
Debug("setup %u vars", (unsigned)_num_vars);
// check the header
_storage.read_block(&hdr, 0, sizeof(hdr));
if (hdr.magic[0] != k_EEPROM_magic0 ||
hdr.magic[1] != k_EEPROM_magic1 ||
hdr.revision != k_EEPROM_revision) {
// header doesn't match. We can't recover any variables. Wipe
// the header and setup the sentinal directly after the header
Debug("bad header in setup - erasing");
erase_all();
}
return true;
}
// check if AP_Param has been initialised
bool AP_Param::initialised(void)
{
return _var_info != NULL;
}
// find the info structure given a header and a group_info table
// return the Info structure and a pointer to the variables storage
const struct AP_Param::Info *AP_Param::find_by_header_group(struct Param_header phdr, void **ptr,
uint8_t vindex,
const struct GroupInfo *group_info,
uint8_t group_base,
uint8_t group_shift)
{
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
// a nested group
if (group_shift + _group_level_shift >= _group_bits) {
// too deeply nested - this should have been caught by
// setup() !
return NULL;
}
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
const struct AP_Param::Info *ret = find_by_header_group(phdr, ptr, vindex, ginfo,
GROUP_ID(group_info, group_base, i, group_shift),
group_shift + _group_level_shift);
if (ret != NULL) {
return ret;
}
continue;
}
#endif // AP_NESTED_GROUPS_ENABLED
if (GROUP_ID(group_info, group_base, i, group_shift) == phdr.group_element) {
// found a group element
*ptr = (void*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset));
return &_var_info[vindex];
}
}
return NULL;
}
// find the info structure given a header
// return the Info structure and a pointer to the variables storage
const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr)
{
// loop over all named variables
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
uint8_t key = PGM_UINT8(&_var_info[i].key);
if (key != phdr.key) {
// not the right key
continue;
}
if (type != AP_PARAM_GROUP) {
// if its not a group then we are done
*ptr = (void*)PGM_POINTER(&_var_info[i].ptr);
return &_var_info[i];
}
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
return find_by_header_group(phdr, ptr, i, group_info, 0, 0);
}
return NULL;
}
// find the info structure for a variable in a group
const struct AP_Param::Info *AP_Param::find_var_info_group(const struct GroupInfo * group_info,
uint8_t vindex,
uint8_t group_base,
uint8_t group_shift,
uint32_t * group_element,
const struct GroupInfo **group_ret,
uint8_t * idx) const
{
uintptr_t base = PGM_POINTER(&_var_info[vindex].ptr);
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
uintptr_t ofs = PGM_POINTER(&group_info[i].offset);
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
// a nested group
if (group_shift + _group_level_shift >= _group_bits) {
// too deeply nested - this should have been caught by
// setup() !
return NULL;
}
const struct AP_Param::Info *info;
info = find_var_info_group(ginfo, vindex,
GROUP_ID(group_info, group_base, i, group_shift),
group_shift + _group_level_shift,
group_element,
group_ret,
idx);
if (info != NULL) {
return info;
}
} else // Forgive the poor formatting - if continues below.
#endif // AP_NESTED_GROUPS_ENABLED
if ((uintptr_t) this == base + ofs) {
*group_element = GROUP_ID(group_info, group_base, i, group_shift);
*group_ret = &group_info[i];
*idx = 0;
return &_var_info[vindex];
} else if (type == AP_PARAM_VECTOR3F &&
(base+ofs+sizeof(float) == (uintptr_t) this ||
base+ofs+2*sizeof(float) == (uintptr_t) this)) {
// we are inside a Vector3f. We need to work out which
// element of the vector the current object refers to.
*idx = (((uintptr_t) this) - (base+ofs))/sizeof(float);
*group_element = GROUP_ID(group_info, group_base, i, group_shift);
*group_ret = &group_info[i];
return &_var_info[vindex];
}
}
return NULL;
}
// find the info structure for a variable
const struct AP_Param::Info *AP_Param::find_var_info(uint32_t * group_element,
const struct GroupInfo ** group_ret,
uint8_t * idx)
{
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
uintptr_t base = PGM_POINTER(&_var_info[i].ptr);
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
const struct AP_Param::Info *info;
info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx);
if (info != NULL) {
return info;
}
} else if (base == (uintptr_t) this) {
*group_element = 0;
*group_ret = NULL;
*idx = 0;
return &_var_info[i];
} else if (type == AP_PARAM_VECTOR3F &&
(base+sizeof(float) == (uintptr_t) this ||
base+2*sizeof(float) == (uintptr_t) this)) {
// we are inside a Vector3f. Work out which element we are
// referring to.
*idx = (((uintptr_t) this) - base)/sizeof(float);
*group_element = 0;
*group_ret = NULL;
return &_var_info[i];
}
}
return NULL;
}
// find the info structure for a variable
const struct AP_Param::Info *AP_Param::find_var_info_token(const ParamToken &token,
uint32_t * group_element,
const struct GroupInfo ** group_ret,
uint8_t * idx) const
{
uint8_t i = token.key;
uint8_t type = PGM_UINT8(&_var_info[i].type);
uintptr_t base = PGM_POINTER(&_var_info[i].ptr);
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
const struct AP_Param::Info *info;
info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx);
if (info != NULL) {
return info;
}
} else if (base == (uintptr_t) this) {
*group_element = 0;
*group_ret = NULL;
*idx = 0;
return &_var_info[i];
} else if (type == AP_PARAM_VECTOR3F &&
(base+sizeof(float) == (uintptr_t) this ||
base+2*sizeof(float) == (uintptr_t) this)) {
// we are inside a Vector3f. Work out which element we are
// referring to.
*idx = (((uintptr_t) this) - base)/sizeof(float);
*group_element = 0;
*group_ret = NULL;
return &_var_info[i];
}
return NULL;
}
// return the storage size for a AP_PARAM_* type
uint8_t AP_Param::type_size(enum ap_var_type type)
{
switch (type) {
case AP_PARAM_NONE:
case AP_PARAM_GROUP:
return 0;
case AP_PARAM_INT8:
return 1;
case AP_PARAM_INT16:
return 2;
case AP_PARAM_INT32:
return 4;
case AP_PARAM_FLOAT:
return 4;
case AP_PARAM_VECTOR3F:
return 3*4;
case AP_PARAM_VECTOR6F:
return 6*4;
case AP_PARAM_MATRIX3F:
return 3*3*4;
}
Debug("unknown type %u\n", type);
return 0;
}
// scan the EEPROM looking for a given variable by header content
// return true if found, along with the offset in the EEPROM where
// the variable is stored
// if not found return the offset of the sentinal
// if the sentinal isn't found either, the offset is set to 0xFFFF
bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs)
{
struct Param_header phdr;
uint16_t ofs = sizeof(AP_Param::EEPROM_header);
while (ofs < _storage.size()) {
_storage.read_block(&phdr, ofs, sizeof(phdr));
if (phdr.type == target->type &&
phdr.key == target->key &&
phdr.group_element == target->group_element) {
// found it
*pofs = ofs;
return true;
}
// note that this is an ||, not an &&, as this makes us more
// robust to power off while adding a variable to EEPROM
if (phdr.type == _sentinal_type ||
phdr.key == _sentinal_key ||
phdr.group_element == _sentinal_group) {
// we've reached the sentinal
*pofs = ofs;
return false;
}
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr);
}
*pofs = 0xffff;
Debug("scan past end of eeprom");
return false;
}
/**
* add a _X, _Y, _Z suffix to the name of a Vector3f element
* @param buffer
* @param buffer_size
* @param idx Suffix: 0 --> _X; 1 --> _Y; 2 --> _Z; (other --> undefined)
*/
void AP_Param::add_vector3f_suffix(char *buffer, size_t buffer_size, uint8_t idx) const
{
const size_t len = strnlen(buffer, buffer_size);
if (len + 2 <= buffer_size) {
buffer[len] = '_';
buffer[len + 1] = static_cast('X' + idx);
if (len + 3 <= buffer_size) {
buffer[len + 2] = 0;
}
}
}
// Copy the variable's whole name to the supplied buffer.
//
// If the variable is a group member, prepend the group name.
//
void AP_Param::copy_name_token(const ParamToken &token, char *buffer, size_t buffer_size, bool force_scalar) const
{
uint32_t group_element;
const struct GroupInfo *ginfo;
uint8_t idx;
const struct AP_Param::Info *info = find_var_info_token(token, &group_element, &ginfo, &idx);
if (info == NULL) {
*buffer = 0;
Debug("no info found");
return;
}
strncpy_P(buffer, info->name, buffer_size);
if (ginfo != NULL) {
uint8_t len = strnlen(buffer, buffer_size);
if (len < buffer_size) {
strncpy_P(&buffer[len], ginfo->name, buffer_size-len);
}
if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&ginfo->type)) {
// the caller wants a specific element in a Vector3f
add_vector3f_suffix(buffer, buffer_size, idx);
}
} else if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&info->type)) {
add_vector3f_suffix(buffer, buffer_size, idx);
}
}
// Find a variable by name in a group
AP_Param *
AP_Param::find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype)
{
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
AP_Param *ap = find_group(name, vindex, ginfo, ptype);
if (ap != NULL) {
return ap;
}
} else
#endif // AP_NESTED_GROUPS_ENABLED
if (strcasecmp_P(name, group_info[i].name) == 0) {
uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr);
*ptype = (enum ap_var_type)type;
return (AP_Param *)(p + PGM_POINTER(&group_info[i].offset));
} else if (type == AP_PARAM_VECTOR3F) {
// special case for finding Vector3f elements
uint8_t suffix_len = strnlen_P(group_info[i].name, AP_MAX_NAME_SIZE);
if (strncmp_P(name, group_info[i].name, suffix_len) == 0 &&
name[suffix_len] == '_' &&
(name[suffix_len+1] == 'X' ||
name[suffix_len+1] == 'Y' ||
name[suffix_len+1] == 'Z')) {
uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr);
AP_Float *v = (AP_Float *)(p + PGM_POINTER(&group_info[i].offset));
*ptype = AP_PARAM_FLOAT;
switch (name[suffix_len+1]) {
case 'X':
return (AP_Float *)&v[0];
case 'Y':
return (AP_Float *)&v[1];
case 'Z':
return (AP_Float *)&v[2];
}
}
}
}
return NULL;
}
// Find a variable by name.
//
AP_Param *
AP_Param::find(const char *name, enum ap_var_type *ptype)
{
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
if (type == AP_PARAM_GROUP) {
uint8_t len = strnlen_P(_var_info[i].name, AP_MAX_NAME_SIZE);
if (strncmp_P(name, _var_info[i].name, len) != 0) {
continue;
}
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
AP_Param *ap = find_group(name + len, i, group_info, ptype);
if (ap != NULL) {
return ap;
}
// we continue looking as we want to allow top level
// parameter to have the same prefix name as group
// parameters, for example CAM_P_G
} else if (strcasecmp_P(name, _var_info[i].name) == 0) {
*ptype = (enum ap_var_type)type;
return (AP_Param *)PGM_POINTER(&_var_info[i].ptr);
}
}
return NULL;
}
// Find a variable by name.
//
AP_Param *
AP_Param::find_P(const prog_char_t *name, enum ap_var_type *ptype)
{
char param_name[AP_MAX_NAME_SIZE+1];
strncpy_P(param_name, name, AP_MAX_NAME_SIZE);
param_name[AP_MAX_NAME_SIZE] = 0;
return find(param_name, ptype);
}
// Find a variable by index. Note that this is quite slow.
//
AP_Param *
AP_Param::find_by_index(uint16_t idx, enum ap_var_type *ptype, ParamToken *token)
{
AP_Param *ap;
uint16_t count=0;
for (ap=AP_Param::first(token, ptype);
ap && count < idx;
ap=AP_Param::next_scalar(token, ptype)) {
count++;
}
return ap;
}
// Find a object by name.
//
AP_Param *
AP_Param::find_object(const char *name)
{
for (uint8_t i=0; i<_num_vars; i++) {
if (strcasecmp_P(name, _var_info[i].name) == 0) {
return (AP_Param *)PGM_POINTER(&_var_info[i].ptr);
}
}
return NULL;
}
// Save the variable to EEPROM, if supported
//
bool AP_Param::save(bool force_save)
{
uint32_t group_element = 0;
const struct GroupInfo *ginfo;
uint8_t idx;
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx);
const AP_Param *ap;
if (info == NULL) {
// we don't have any info on how to store it
return false;
}
struct Param_header phdr;
// create the header we will use to store the variable
if (ginfo != NULL) {
phdr.type = PGM_UINT8(&ginfo->type);
} else {
phdr.type = PGM_UINT8(&info->type);
}
phdr.key = PGM_UINT8(&info->key);
phdr.group_element = group_element;
ap = this;
if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) {
// only vector3f can have non-zero idx for now
return false;
}
if (idx != 0) {
ap = (const AP_Param *)((uintptr_t)ap) - (idx*sizeof(float));
}
// scan EEPROM to find the right location
uint16_t ofs;
if (scan(&phdr, &ofs)) {
// found an existing copy of the variable
eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type));
return true;
}
if (ofs == (uint16_t) ~0) {
return false;
}
// if the value is the default value then don't save
if (phdr.type <= AP_PARAM_FLOAT) {
float v1 = cast_to_float((enum ap_var_type)phdr.type);
float v2;
if (ginfo != NULL) {
v2 = PGM_FLOAT(&ginfo->def_value);
} else {
v2 = PGM_FLOAT(&info->def_value);
}
if (v1 == v2 && !force_save) {
return true;
}
if (phdr.type != AP_PARAM_INT32 &&
(fabsf(v1-v2) < 0.0001f*fabsf(v1))) {
// for other than 32 bit integers, we accept values within
// 0.01 percent of the current value as being the same
return true;
}
}
if (ofs+type_size((enum ap_var_type)phdr.type)+2*sizeof(phdr) >= _storage.size()) {
// we are out of room for saving variables
hal.console->println_P(PSTR("EEPROM full"));
return false;
}
// write a new sentinal, then the data, then the header
write_sentinal(ofs + sizeof(phdr) + type_size((enum ap_var_type)phdr.type));
eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type));
eeprom_write_check(&phdr, ofs, sizeof(phdr));
return true;
}
// Load the variable from EEPROM, if supported
//
bool AP_Param::load(void)
{
uint32_t group_element = 0;
const struct GroupInfo *ginfo;
uint8_t idx;
const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx);
if (info == NULL) {
// we don't have any info on how to load it
return false;
}
struct Param_header phdr;
// create the header we will use to match the variable
if (ginfo != NULL) {
phdr.type = PGM_UINT8(&ginfo->type);
} else {
phdr.type = PGM_UINT8(&info->type);
}
phdr.key = PGM_UINT8(&info->key);
phdr.group_element = group_element;
// scan EEPROM to find the right location
uint16_t ofs;
if (!scan(&phdr, &ofs)) {
// if the value isn't stored in EEPROM then set the default value
if (ginfo != NULL) {
uintptr_t base = PGM_POINTER(&info->ptr);
set_value((enum ap_var_type)phdr.type, (void*)(base + PGM_UINT16(&ginfo->offset)),
PGM_FLOAT(&ginfo->def_value));
} else {
set_value((enum ap_var_type)phdr.type, (void*)PGM_POINTER(&info->ptr), PGM_FLOAT(&info->def_value));
}
return false;
}
if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) {
// only vector3f can have non-zero idx for now
return false;
}
AP_Param *ap;
ap = this;
if (idx != 0) {
ap = (AP_Param *)((uintptr_t)ap) - (idx*sizeof(float));
}
// found it
_storage.read_block(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type));
return true;
}
// set a AP_Param variable to a specified value
void AP_Param::set_value(enum ap_var_type type, void *ptr, float value)
{
switch (type) {
case AP_PARAM_INT8:
((AP_Int8 *)ptr)->set(value);
break;
case AP_PARAM_INT16:
((AP_Int16 *)ptr)->set(value);
break;
case AP_PARAM_INT32:
((AP_Int32 *)ptr)->set(value);
break;
case AP_PARAM_FLOAT:
((AP_Float *)ptr)->set(value);
break;
default:
break;
}
}
// load default values for scalars in a group. This does not recurse
// into other objects. This is a static function that should be called
// in the objects constructor
void AP_Param::setup_object_defaults(const void *object_pointer, const struct GroupInfo *group_info)
{
uintptr_t base = (uintptr_t)object_pointer;
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
if (type <= AP_PARAM_FLOAT) {
void *ptr = (void *)(base + PGM_UINT16(&group_info[i].offset));
set_value((enum ap_var_type)type, ptr, PGM_FLOAT(&group_info[i].def_value));
}
}
}
// set a value directly in an object. This should only be used by
// example code, not by mainline vehicle code
void AP_Param::set_object_value(const void *object_pointer,
const struct GroupInfo *group_info,
const char *name, float value)
{
uintptr_t base = (uintptr_t)object_pointer;
uint8_t type;
for (uint8_t i=0;
(type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
if (strcmp(name, group_info[i].name) == 0 && type <= AP_PARAM_FLOAT) {
void *ptr = (void *)(base + PGM_UINT16(&group_info[i].offset));
set_value((enum ap_var_type)type, ptr, value);
}
}
}
// load default values for all scalars in a sketch. This does not
// recurse into sub-objects
void AP_Param::setup_sketch_defaults(void)
{
setup();
for (uint8_t i=0; i<_num_vars; i++) {
uint8_t type = PGM_UINT8(&_var_info[i].type);
if (type <= AP_PARAM_FLOAT) {
void *ptr = (void*)PGM_POINTER(&_var_info[i].ptr);
set_value((enum ap_var_type)type, ptr, PGM_FLOAT(&_var_info[i].def_value));
}
}
}
// Load all variables from EEPROM
//
bool AP_Param::load_all(void)
{
struct Param_header phdr;
uint16_t ofs = sizeof(AP_Param::EEPROM_header);
while (ofs < _storage.size()) {
_storage.read_block(&phdr, ofs, sizeof(phdr));
// note that this is an || not an && for robustness
// against power off while adding a variable
if (phdr.type == _sentinal_type ||
phdr.key == _sentinal_key ||
phdr.group_element == _sentinal_group) {
// we've reached the sentinal
return true;
}
const struct AP_Param::Info *info;
void *ptr;
info = find_by_header(phdr, &ptr);
if (info != NULL) {
_storage.read_block(ptr, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type));
}
ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr);
}
// we didn't find the sentinal
Debug("no sentinal in load_all");
return false;
}
// return the first variable in _var_info
AP_Param *AP_Param::first(ParamToken *token, enum ap_var_type *ptype)
{
token->key = 0;
token->group_element = 0;
token->idx = 0;
if (_num_vars == 0) {
return NULL;
}
if (ptype != NULL) {
*ptype = (enum ap_var_type)PGM_UINT8(&_var_info[0].type);
}
return (AP_Param *)(PGM_POINTER(&_var_info[0].ptr));
}
/// Returns the next variable in a group, recursing into groups
/// as needed
AP_Param *AP_Param::next_group(uint8_t vindex, const struct GroupInfo *group_info,
bool *found_current,
uint8_t group_base,
uint8_t group_shift,
ParamToken *token,
enum ap_var_type *ptype)
{
enum ap_var_type type;
for (uint8_t i=0;
(type=(enum ap_var_type)PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE;
i++) {
#ifdef AP_NESTED_GROUPS_ENABLED
if (type == AP_PARAM_GROUP) {
// a nested group
const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info);
AP_Param *ap;
ap = next_group(vindex, ginfo, found_current, GROUP_ID(group_info, group_base, i, group_shift),
group_shift + _group_level_shift, token, ptype);
if (ap != NULL) {
return ap;
}
} else
#endif // AP_NESTED_GROUPS_ENABLED
{
if (*found_current) {
// got a new one
token->key = vindex;
token->group_element = GROUP_ID(group_info, group_base, i, group_shift);
token->idx = 0;
if (ptype != NULL) {
*ptype = type;
}
return (AP_Param*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset));
}
if (GROUP_ID(group_info, group_base, i, group_shift) == token->group_element) {
*found_current = true;
if (type == AP_PARAM_VECTOR3F && token->idx < 3) {
// return the next element of the vector as a
// float
token->idx++;
if (ptype != NULL) {
*ptype = AP_PARAM_FLOAT;
}
uintptr_t ofs = (uintptr_t)PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset);
ofs += sizeof(float)*(token->idx - 1u);
return (AP_Param *)ofs;
}
}
}
}
return NULL;
}
/// Returns the next variable in _var_info, recursing into groups
/// as needed
AP_Param *AP_Param::next(ParamToken *token, enum ap_var_type *ptype)
{
uint8_t i = token->key;
bool found_current = false;
if (i >= _num_vars) {
// illegal token
return NULL;
}
enum ap_var_type type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type);
// allow Vector3f to be seen as 3 variables. First as a vector,
// then as 3 separate floats
if (type == AP_PARAM_VECTOR3F && token->idx < 3) {
token->idx++;
if (ptype != NULL) {
*ptype = AP_PARAM_FLOAT;
}
return (AP_Param *)(((token->idx - 1u)*sizeof(float))+(uintptr_t)PGM_POINTER(&_var_info[i].ptr));
}
if (type != AP_PARAM_GROUP) {
i++;
found_current = true;
}
for (; i<_num_vars; i++) {
type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type);
if (type == AP_PARAM_GROUP) {
const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info);
AP_Param *ap = next_group(i, group_info, &found_current, 0, 0, token, ptype);
if (ap != NULL) {
return ap;
}
} else {
// found the next one
token->key = i;
token->group_element = 0;
token->idx = 0;
if (ptype != NULL) {
*ptype = type;
}
return (AP_Param *)(PGM_POINTER(&_var_info[i].ptr));
}
}
return NULL;
}
/// Returns the next scalar in _var_info, recursing into groups
/// as needed
AP_Param *AP_Param::next_scalar(ParamToken *token, enum ap_var_type *ptype)
{
AP_Param *ap;
enum ap_var_type type;
while ((ap = next(token, &type)) != NULL && type > AP_PARAM_FLOAT) ;
if (ap != NULL && ptype != NULL) {
*ptype = type;
}
return ap;
}
/// cast a variable to a float given its type
float AP_Param::cast_to_float(enum ap_var_type type) const
{
switch (type) {
case AP_PARAM_INT8:
return ((AP_Int8 *)this)->cast_to_float();
case AP_PARAM_INT16:
return ((AP_Int16 *)this)->cast_to_float();
case AP_PARAM_INT32:
return ((AP_Int32 *)this)->cast_to_float();
case AP_PARAM_FLOAT:
return ((AP_Float *)this)->cast_to_float();
default:
return NAN;
}
}
// print the value of all variables
void AP_Param::show(const AP_Param *ap, const char *s,
enum ap_var_type type, AP_HAL::BetterStream *port)
{
switch (type) {
case AP_PARAM_INT8:
port->printf_P(PSTR("%s: %d\n"), s, (int)((AP_Int8 *)ap)->get());
break;
case AP_PARAM_INT16:
port->printf_P(PSTR("%s: %d\n"), s, (int)((AP_Int16 *)ap)->get());
break;
case AP_PARAM_INT32:
port->printf_P(PSTR("%s: %ld\n"), s, (long)((AP_Int32 *)ap)->get());
break;
case AP_PARAM_FLOAT:
port->printf_P(PSTR("%s: %f\n"), s, ((AP_Float *)ap)->get());
break;
default:
break;
}
}
// print the value of all variables
void AP_Param::show(const AP_Param *ap, const ParamToken &token,
enum ap_var_type type, AP_HAL::BetterStream *port)
{
char s[AP_MAX_NAME_SIZE+1];
ap->copy_name_token(token, s, sizeof(s), true);
s[AP_MAX_NAME_SIZE] = 0;
show(ap, s, type, port);
}
// print the value of all variables
void AP_Param::show_all(AP_HAL::BetterStream *port)
{
ParamToken token;
AP_Param *ap;
enum ap_var_type type;
for (ap=AP_Param::first(&token, &type);
ap;
ap=AP_Param::next_scalar(&token, &type)) {
show(ap, token, type, port);
}
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wformat"
// convert one old vehicle parameter to new object parameter
void AP_Param::convert_old_parameter(const struct ConversionInfo *info)
{
// find the old value in EEPROM.
uint16_t pofs;
AP_Param::Param_header header;
header.type = PGM_UINT8(&info->type);
header.key = PGM_UINT8(&info->old_key);
header.group_element = PGM_UINT8(&info->old_group_element);
if (!scan(&header, &pofs)) {
// the old parameter isn't saved in the EEPROM. It was
// probably still set to the default value, which isn't stored
// no need to convert
return;
}
// load the old value from EEPROM
uint8_t old_value[type_size((enum ap_var_type)header.type)];
_storage.read_block(old_value, pofs+sizeof(header), sizeof(old_value));
const AP_Param *ap = (const AP_Param *)&old_value[0];
// find the new variable in the variable structures
enum ap_var_type ptype;
AP_Param *ap2;
ap2 = find_P((const prog_char_t *)&info->new_name[0], &ptype);
if (ap2 == NULL) {
hal.console->printf_P(PSTR("Unknown conversion '%S'\n"), info->new_name);
return;
}
// see if we can load it from EEPROM
if (ap2->load()) {
// the new parameter already has a value set by the user, or
// has already been converted
return;
}
// see if they are the same type
if (ptype == (ap_var_type)header.type) {
// copy the value over only if the new parameter does not already
// have the old value (via a default).
if (memcmp(ap2, ap, sizeof(old_value)) != 0) {
memcpy(ap2, ap, sizeof(old_value));
// and save
ap2->save();
}
} else if (ptype <= AP_PARAM_FLOAT && header.type <= AP_PARAM_FLOAT) {
// perform scalar->scalar conversion
float v = ap->cast_to_float((enum ap_var_type)header.type);
if (v != ap2->cast_to_float(ptype)) {
// the value needs to change
set_value(ptype, ap2, v);
ap2->save();
}
} else {
// can't do vector<->scalar conversion, or different vector types
hal.console->printf_P(PSTR("Bad conversion type '%S'\n"), info->new_name);
}
}
#pragma GCC diagnostic pop
// convert old vehicle parameters to new object parametersv
void AP_Param::convert_old_parameters(const struct ConversionInfo *conversion_table, uint8_t table_size)
{
for (uint8_t i=0; i