// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- //**************************************************************** // Function that will calculate the desired direction to fly and distance //**************************************************************** void navigate() { // do not navigate with corrupt data // --------------------------------- if (g_gps->fix == 0){ g_gps->new_data = false; return; } if(next_WP.lat == 0){ return; } // waypoint distance from plane // ---------------------------- wp_distance = get_distance(¤t_loc, &next_WP); if (wp_distance < 0){ gcs.send_text(SEVERITY_HIGH," WP error - distance < 0"); //Serial.println(wp_distance,DEC); //print_current_waypoints(); return; } // target_bearing is where we should be heading // -------------------------------------------- target_bearing = get_bearing(¤t_loc, &next_WP); // nav_bearing will includes xtrac correction // ------------------------------------------ nav_bearing = target_bearing; // check if we have missed the WP loiter_delta = (target_bearing - old_target_bearing)/100; // reset the old value old_target_bearing = target_bearing; // wrap values if (loiter_delta > 180) loiter_delta -= 360; if (loiter_delta < -180) loiter_delta += 360; loiter_sum += abs(loiter_delta); // control mode specific updates to nav_bearing // -------------------------------------------- update_navigation(); } #define DIST_ERROR_MAX 1800 void calc_nav() { Vector2f yawvector; Matrix3f temp; /* Becuase we are using lat and lon to do our distance errors here's a quick chart: 100 = 1m 1000 = 11m 3000 = 33m 10000 = 111m pitch_max = 22° (2200) */ long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 50 - 30 = 20 pitch right lat_error = next_WP.lat - current_loc.lat; // 50 - 30 = 20 pitch up long_error = constrain(long_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error lat_error = constrain(lat_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error // Convert distance into ROLL X nav_lon = long_error * g.pid_nav_lon.kP(); // 1800 * 2 = 3600 or 36° //nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav2, 1.0); //nav_lon = constrain(nav_lon, -DIST_ERROR_MAX, DIST_ERROR_MAX); // Limit max command // PITCH Y //nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav2, 1.0); nav_lat = lat_error * g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36° //nav_lat = constrain(nav_lat, -DIST_ERROR_MAX, DIST_ERROR_MAX); // Limit max command // rotate the vector nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x; nav_pitch = -((float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y); long pmax = g.pitch_max.get(); nav_roll = constrain(nav_roll, -pmax, pmax); nav_pitch = constrain(nav_pitch, -pmax, pmax); } void calc_bearing_error() { bearing_error = nav_bearing - dcm.yaw_sensor; bearing_error = wrap_180(bearing_error); } void calc_altitude_error() { if(control_mode == AUTO && offset_altitude != 0) { // limit climb rates - we draw a straight line between first location and edge of waypoint_radius target_altitude = next_WP.alt - ((wp_distance * offset_altitude) / (wp_totalDistance - g.waypoint_radius)); // stay within a certain range if(prev_WP.alt > next_WP.alt){ target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt); }else{ target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt); } }else{ target_altitude = next_WP.alt; } altitude_error = target_altitude - current_loc.alt; } long wrap_360(long error) { if (error > 36000) error -= 36000; if (error < 0) error += 36000; return error; } long wrap_180(long error) { if (error > 18000) error -= 36000; if (error < -18000) error += 36000; return error; } void update_loiter() { float power; if(wp_distance <= g.loiter_radius){ power = float(wp_distance) / float(g.loiter_radius); nav_bearing += (int)(9000.0 * (2.0 + power)); }else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){ power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE); power = constrain(power, 0, 1); nav_bearing -= power * 9000; }else{ update_crosstrack(); loiter_time = millis(); // keep start time for loiter updating till we get within LOITER_RANGE of orbit } if (wp_distance < g.loiter_radius){ nav_bearing += 9000; }else{ nav_bearing -= 100 * M_PI / 180 * asin(g.loiter_radius / wp_distance); } update_crosstrack; nav_bearing = wrap_360(nav_bearing); } void update_crosstrack(void) { // Crosstrack Error // ---------------- if (abs(target_bearing - crosstrack_bearing) < 4500) { // If we are too far off or too close we don't do track following crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / 100)) * wp_distance; // Meters we are off track line nav_bearing += constrain(crosstrack_error * g.crosstrack_gain, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); nav_bearing = wrap_360(nav_bearing); } } void reset_crosstrack() { crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following } long get_altitude_above_home(void) { // This is the altitude above the home location // The GPS gives us altitude at Sea Level // if you slope soar, you should see a negative number sometimes // ------------------------------------------------------------- return current_loc.alt - home.alt; } long get_distance(struct Location *loc1, struct Location *loc2) { if(loc1->lat == 0 || loc1->lng == 0) return -1; if(loc2->lat == 0 || loc2->lng == 0) return -1; float dlat = (float)(loc2->lat - loc1->lat); float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; return sqrt(sq(dlat) + sq(dlong)) * .01113195; } long get_alt_distance(struct Location *loc1, struct Location *loc2) { return abs(loc1->alt - loc2->alt); } long get_bearing(struct Location *loc1, struct Location *loc2) { long off_x = loc2->lng - loc1->lng; long off_y = (loc2->lat - loc1->lat) * scaleLongUp; long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; if (bearing < 0) bearing += 36000; return bearing; }