/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * APM_MS5611.cpp - Arduino Library for MS5611-01BA01 absolute pressure sensor * Code by Jose Julio, Pat Hickey and Jordi Muñoz. DIYDrones.com * * Sensor is conected to standard SPI port * Chip Select pin: Analog2 (provisional until Jordi defines the pin)!! * * Variables: * Temp : Calculated temperature (in Celsius degrees) * Press : Calculated pressure (in mbar units * 100) * * * Methods: * init() : Initialization and sensor reset * read() : Read sensor data and _calculate Temperature, Pressure * This function is optimized so the main host don´t need to wait * You can call this function in your main loop * Maximum data output frequency 100Hz - this allows maximum oversampling in the chip ADC * It returns a 1 if there are new data. * get_pressure() : return pressure in mbar*100 units * get_temperature() : return temperature in celsius degrees*100 units * * Internal functions: * _calculate() : Calculate Temperature and Pressure (temperature compensated) in real units * * */ #include #include "AP_Baro_MS5611.h" extern const AP_HAL::HAL& hal; #define CMD_MS5611_RESET 0x1E #define CMD_MS5611_PROM_Setup 0xA0 #define CMD_MS5611_PROM_C1 0xA2 #define CMD_MS5611_PROM_C2 0xA4 #define CMD_MS5611_PROM_C3 0xA6 #define CMD_MS5611_PROM_C4 0xA8 #define CMD_MS5611_PROM_C5 0xAA #define CMD_MS5611_PROM_C6 0xAC #define CMD_MS5611_PROM_CRC 0xAE #define CMD_CONVERT_D1_OSR4096 0x48 // Maximum resolution (oversampling) #define CMD_CONVERT_D2_OSR4096 0x58 // Maximum resolution (oversampling) uint32_t volatile AP_Baro_MS5611::_s_D1; uint32_t volatile AP_Baro_MS5611::_s_D2; uint8_t volatile AP_Baro_MS5611::_d1_count; uint8_t volatile AP_Baro_MS5611::_d2_count; uint8_t AP_Baro_MS5611::_state; uint32_t AP_Baro_MS5611::_timer; bool volatile AP_Baro_MS5611::_updated; AP_Baro_MS5611_Serial* AP_Baro_MS5611::_serial = NULL; AP_Baro_MS5611_SPI AP_Baro_MS5611::spi; #if MS5611_WITH_I2C AP_Baro_MS5611_I2C AP_Baro_MS5611::i2c; #endif // SPI Device ////////////////////////////////////////////////////////////////// void AP_Baro_MS5611_SPI::init() { _spi = hal.spi->device(AP_HAL::SPIDevice_MS5611); if (_spi == NULL) { hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get " "valid SPI device driver!")); return; /* never reached */ } _spi_sem = _spi->get_semaphore(); if (_spi_sem == NULL) { hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get " "valid SPI semaphroe!")); return; /* never reached */ } // now that we have initialised, we set the SPI bus speed to high // (8MHz on APM2) _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); } uint16_t AP_Baro_MS5611_SPI::read_16bits(uint8_t reg) { uint8_t tx[3]; uint8_t rx[3]; tx[0] = reg; tx[1] = 0; tx[2] = 0; _spi->transaction(tx, rx, 3); return ((uint16_t) rx[1] << 8 ) | ( rx[2] ); } uint32_t AP_Baro_MS5611_SPI::read_adc() { uint8_t tx[4]; uint8_t rx[4]; memset(tx, 0, 4); /* first byte is addr = 0 */ _spi->transaction(tx, rx, 4); return (((uint32_t)rx[1])<<16) | (((uint32_t)rx[2])<<8) | ((uint32_t)rx[3]); } void AP_Baro_MS5611_SPI::write(uint8_t reg) { uint8_t tx[1]; tx[0] = reg; _spi->transaction(tx, NULL, 1); } bool AP_Baro_MS5611_SPI::sem_take_blocking() { return _spi_sem->take(10); } bool AP_Baro_MS5611_SPI::sem_take_nonblocking() { /** * Take nonblocking from a TimerProcess context & * monitor for bad failures */ static int semfail_ctr = 0; bool got = _spi_sem->take_nonblocking(); if (!got) { if (!hal.scheduler->system_initializing()) { semfail_ctr++; if (semfail_ctr > 100) { hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem " "100 times in a row, in " "AP_Baro_MS5611::_update")); } } return false; /* never reached */ } else { semfail_ctr = 0; } return got; } void AP_Baro_MS5611_SPI::sem_give() { _spi_sem->give(); } // I2C Device ////////////////////////////////////////////////////////////////// #if MS5611_WITH_I2C /** I2C address of the MS5611 on the PX4 board. */ #define MS5611_ADDR 0x76 void AP_Baro_MS5611_I2C::init() { _i2c_sem = hal.i2c->get_semaphore(); if (_i2c_sem == NULL) { hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get " "valid I2C semaphroe!")); return; /* never reached */ } } uint16_t AP_Baro_MS5611_I2C::read_16bits(uint8_t reg) { uint8_t buf[2]; if (hal.i2c->readRegisters(MS5611_ADDR, reg, sizeof(buf), buf) == 0) return (((uint16_t)(buf[0]) << 8) | buf[1]); return 0; } uint32_t AP_Baro_MS5611_I2C::read_adc() { uint8_t buf[3]; if (hal.i2c->readRegisters(MS5611_ADDR, 0x00, sizeof(buf), buf) == 0) return (((uint32_t)buf[0]) << 16) | (((uint32_t)buf[1]) << 8) | buf[2]; return 0; } void AP_Baro_MS5611_I2C::write(uint8_t reg) { hal.i2c->write(MS5611_ADDR, 1, ®); } bool AP_Baro_MS5611_I2C::sem_take_blocking() { return _i2c_sem->take(10); } bool AP_Baro_MS5611_I2C::sem_take_nonblocking() { /** * Take nonblocking from a TimerProcess context & * monitor for bad failures */ static int semfail_ctr = 0; bool got = _i2c_sem->take_nonblocking(); if (!got) { if (!hal.scheduler->system_initializing()) { semfail_ctr++; if (semfail_ctr > 100) { hal.scheduler->panic(PSTR("PANIC: failed to take _i2c_sem " "100 times in a row, in " "AP_Baro_MS5611::_update")); } } return false; /* never reached */ } else { semfail_ctr = 0; } return got; } void AP_Baro_MS5611_I2C::sem_give() { _i2c_sem->give(); } #endif // MS5611_WITH_I2C // Public Methods ////////////////////////////////////////////////////////////// #if CONFIG_HAL_BOARD != HAL_BOARD_APM2 /** * MS5611 crc4 method based on PX4Firmware code */ bool AP_Baro_MS5611::check_crc(void) { int16_t cnt; uint16_t n_rem; uint16_t crc_read; uint8_t n_bit; uint16_t n_prom[8] = { _serial->read_16bits(CMD_MS5611_PROM_Setup), C1, C2, C3, C4, C5, C6, _serial->read_16bits(CMD_MS5611_PROM_CRC) }; n_rem = 0x00; /* save the read crc */ crc_read = n_prom[7]; /* remove CRC byte */ n_prom[7] = (0xFF00 & (n_prom[7])); for (cnt = 0; cnt < 16; cnt++) { /* uneven bytes */ if (cnt & 1) { n_rem ^= (uint8_t)((n_prom[cnt >> 1]) & 0x00FF); } else { n_rem ^= (uint8_t)(n_prom[cnt >> 1] >> 8); } for (n_bit = 8; n_bit > 0; n_bit--) { if (n_rem & 0x8000) { n_rem = (n_rem << 1) ^ 0x3000; } else { n_rem = (n_rem << 1); } } } /* final 4 bit remainder is CRC value */ n_rem = (0x000F & (n_rem >> 12)); n_prom[7] = crc_read; /* return true if CRCs match */ return (0x000F & crc_read) == (n_rem ^ 0x00); } #endif // SPI should be initialized externally bool AP_Baro_MS5611::init() { if (_serial == NULL) { hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: NULL serial driver")); return false; /* never reached */ } _serial->init(); if (!_serial->sem_take_blocking()){ hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: failed to take " "serial semaphore for init")); return false; /* never reached */ } _serial->write(CMD_MS5611_RESET); hal.scheduler->delay(4); // We read the factory calibration // The on-chip CRC is not used C1 = _serial->read_16bits(CMD_MS5611_PROM_C1); C2 = _serial->read_16bits(CMD_MS5611_PROM_C2); C3 = _serial->read_16bits(CMD_MS5611_PROM_C3); C4 = _serial->read_16bits(CMD_MS5611_PROM_C4); C5 = _serial->read_16bits(CMD_MS5611_PROM_C5); C6 = _serial->read_16bits(CMD_MS5611_PROM_C6); // if not on APM2 then check CRC #if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 if (!check_crc()) { hal.scheduler->panic("Bad CRC on MS5611"); } #endif //Send a command to read Temp first _serial->write(CMD_CONVERT_D2_OSR4096); _timer = hal.scheduler->micros(); _state = 0; Temp=0; Press=0; _s_D1 = 0; _s_D2 = 0; _d1_count = 0; _d2_count = 0; hal.scheduler->register_timer_process( AP_HAL_MEMBERPROC(&AP_Baro_MS5611::_update)); _serial->sem_give(); // wait for at least one value to be read uint32_t tstart = hal.scheduler->millis(); while (!_updated) { hal.scheduler->delay(10); if (hal.scheduler->millis() - tstart > 1000) { hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 took more than " "1000ms to initialize")); healthy = false; return false; } } healthy = true; return true; } // Read the sensor. This is a state machine // We read one time Temperature (state=1) and then 4 times Pressure (states 2-5) // temperature does not change so quickly... void AP_Baro_MS5611::_update(void) { uint32_t tnow = hal.scheduler->micros(); // Throttle read rate to 100hz maximum. if (tnow - _timer < 10000) { return; } if (!_serial->sem_take_nonblocking()) { return; } _timer = tnow; if (_state == 0) { // On state 0 we read temp uint32_t d2 = _serial->read_adc(); if (d2 != 0) { _s_D2 += d2; _d2_count++; if (_d2_count == 32) { // we have summed 32 values. This only happens // when we stop reading the barometer for a long time // (more than 1.2 seconds) _s_D2 >>= 1; _d2_count = 16; } } _state++; _serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure } else { uint32_t d1 = _serial->read_adc();; if (d1 != 0) { // occasional zero values have been seen on the PXF // board. These may be SPI errors, but safest to ignore _s_D1 += d1; _d1_count++; if (_d1_count == 128) { // we have summed 128 values. This only happens // when we stop reading the barometer for a long time // (more than 1.2 seconds) _s_D1 >>= 1; _d1_count = 64; } // Now a new reading exists _updated = true; } _state++; if (_state == 5) { _serial->write(CMD_CONVERT_D2_OSR4096); // Command to read temperature _state = 0; } else { _serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure } } _serial->sem_give(); } uint8_t AP_Baro_MS5611::read() { bool updated = _updated; if (updated) { uint32_t sD1, sD2; uint8_t d1count, d2count; // Suspend timer procs because these variables are written to // in "_update". hal.scheduler->suspend_timer_procs(); sD1 = _s_D1; _s_D1 = 0; sD2 = _s_D2; _s_D2 = 0; d1count = _d1_count; _d1_count = 0; d2count = _d2_count; _d2_count = 0; _updated = false; hal.scheduler->resume_timer_procs(); if (d1count != 0) { D1 = ((float)sD1) / d1count; } if (d2count != 0) { D2 = ((float)sD2) / d2count; } _pressure_samples = d1count; _raw_press = D1; _raw_temp = D2; } _calculate(); if (updated) { _last_update = hal.scheduler->millis(); } return updated ? 1 : 0; } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS5611::_calculate() { float dT; float TEMP; float OFF; float SENS; float P; // Formulas from manufacturer datasheet // sub -20c temperature compensation is not included // we do the calculations using floating point // as this is much faster on an AVR2560, and also allows // us to take advantage of the averaging of D1 and D1 over // multiple samples, giving us more precision dT = D2-(((uint32_t)C5)<<8); TEMP = (dT * C6)/8388608; OFF = C2 * 65536.0f + (C4 * dT) / 128; SENS = C1 * 32768.0f + (C3 * dT) / 256; if (TEMP < 0) { // second order temperature compensation when under 20 degrees C float T2 = (dT*dT) / 0x80000000; float Aux = TEMP*TEMP; float OFF2 = 2.5f*Aux; float SENS2 = 1.25f*Aux; TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } P = (D1*SENS/2097152 - OFF)/32768; Temp = (TEMP + 2000) * 0.01f; Press = P; } float AP_Baro_MS5611::get_pressure() { return Press; } float AP_Baro_MS5611::get_temperature() { // temperature in degrees C units return Temp; }