/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static int get_stabilize_roll(int32_t target_angle) { int32_t error; int32_t rate; // angle error error = wrap_180(target_angle - dcm.roll_sensor); #if FRAME_CONFIG == HELI_FRAME // limit the error we're feeding to the PID error = constrain(error, -4500, 4500); // convert to desired Rate: rate = g.pi_stabilize_roll.get_pi(error, G_Dt); // output control: rate = constrain(rate, -4500, 4500); return (int)rate; #else // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // conver to desired Rate: rate = g.pi_stabilize_roll.get_p(error); // experiment to pipe iterm directly into the output int16_t iterm = g.pi_stabilize_roll.get_i(error, G_Dt); // rate control error = rate - (omega.x * DEGX100); rate = g.pi_rate_roll.get_pi(error, G_Dt); // output control: rate = constrain(rate, -2500, 2500); return (int)rate + iterm; #endif } static int get_stabilize_pitch(int32_t target_angle) { int32_t error; int32_t rate; // angle error error = wrap_180(target_angle - dcm.pitch_sensor); #if FRAME_CONFIG == HELI_FRAME // limit the error we're feeding to the PID error = constrain(error, -4500, 4500); // convert to desired Rate: rate = g.pi_stabilize_pitch.get_pi(error, G_Dt); // output control: rate = constrain(rate, -4500, 4500); return (int)rate; #else // angle error error = constrain(error, -2500, 2500); // convert to desired Rate: rate = g.pi_stabilize_pitch.get_p(error); // experiment to pipe iterm directly into the output int16_t iterm = g.pi_stabilize_pitch.get_i(error, G_Dt); error = rate - (omega.y * DEGX100); rate = g.pi_rate_pitch.get_pi(error, G_Dt); // output control: rate = constrain(rate, -2500, 2500); return (int)rate + iterm; #endif } #define YAW_ERROR_MAX 2000 static int get_stabilize_yaw(int32_t target_angle) { int32_t error; int32_t rate; // angle error error = wrap_180(target_angle - dcm.yaw_sensor); // limit the error we're feeding to the PID error = constrain(error, -YAW_ERROR_MAX, YAW_ERROR_MAX); // convert to desired Rate: rate = g.pi_stabilize_yaw.get_p(error); // experiment to pipe iterm directly into the output int16_t iterm = g.pi_stabilize_yaw.get_i(error, G_Dt); #if FRAME_CONFIG == HELI_FRAME // cannot use rate control for helicopters if( !g.heli_ext_gyro_enabled ) { error = rate - (omega.z * DEGX100); rate = g.pi_rate_yaw.get_pi(error, G_Dt); } // output control: rate = constrain(rate, -4500, 4500); #else error = rate - (omega.z * DEGX100); rate = g.pi_rate_yaw.get_pi(error, G_Dt); // output control: rate = constrain(rate, -2500, 2500); #endif return (int)rate + iterm; } #define ALT_ERROR_MAX 300 static int16_t get_nav_throttle(int32_t z_error) { int16_t rate_error; float dt = (abs(z_error) < 200) ? .1 : 0.0; // limit error to prevent I term run up z_error = constrain(z_error, -ALT_ERROR_MAX, ALT_ERROR_MAX); // convert to desired Rate: rate_error = g.pi_alt_hold.get_p(z_error); //_p = .85 // experiment to pipe iterm directly into the output int16_t iterm = g.pi_alt_hold.get_i(z_error, dt); // calculate rate error rate_error = rate_error - climb_rate; // limit the rate rate_error = constrain((int)g.pi_throttle.get_pi(rate_error, .1), -120, 180); // output control: return rate_error + iterm; } static int get_rate_roll(int32_t target_rate) { int32_t error = (target_rate * 3.5) - (degrees(omega.x) * 100.0); return g.pi_acro_roll.get_pi(error, G_Dt); } static int get_rate_pitch(int32_t target_rate) { int32_t error = (target_rate * 3.5) - (degrees(omega.y) * 100.0); return g.pi_acro_pitch.get_pi(error, G_Dt); } static int get_rate_yaw(int32_t target_rate) { int32_t error; error = (target_rate * 4.5) - (degrees(omega.z) * 100.0); target_rate = g.pi_rate_yaw.get_pi(error, G_Dt); // output control: return (int)constrain(target_rate, -2500, 2500); } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations static void reset_hold_I(void) { g.pi_loiter_lat.reset_I(); g.pi_loiter_lon.reset_I(); } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations static void reset_nav(void) { nav_throttle = 0; invalid_throttle = true; g.pi_nav_lat.reset_I(); g.pi_nav_lon.reset_I(); circle_angle = 0; crosstrack_error = 0; nav_lat = 0; nav_lon = 0; nav_roll = 0; nav_pitch = 0; target_bearing = 0; wp_distance = 0; wp_totalDistance = 0; long_error = 0; lat_error = 0; } /************************************************************* throttle control ****************************************************************/ static long get_nav_yaw_offset(int yaw_input, int reset) { int32_t _yaw; if(reset == 0){ // we are on the ground return dcm.yaw_sensor; }else{ // re-define nav_yaw if we have stick input if(yaw_input != 0){ // set nav_yaw + or - the current location _yaw = yaw_input + dcm.yaw_sensor; // we need to wrap our value so we can be 0 to 360 (*100) return wrap_360(_yaw); }else{ // no stick input, lets not change nav_yaw return nav_yaw; } } } static int get_angle_boost(int value) { float temp = cos_pitch_x * cos_roll_x; temp = 1.0 - constrain(temp, .5, 1.0); return (int)(temp * value); } // Accelerometer Z dampening by Aurelio R. Ramos // --------------------------------------------- #if ACCEL_ALT_HOLD == 1 // contains G and any other DC offset static float estimatedAccelOffset = 0; // state static float synVelo = 0; static float synPos = 0; static float synPosFiltered = 0; static float posError = 0; static float prevSensedPos = 0; // tuning for dead reckoning static const float dt_50hz = 0.02; static float synPosP = 10 * dt_50hz; static float synPosI = 15 * dt_50hz; static float synVeloP = 1.5 * dt_50hz; static float maxVeloCorrection = 5 * dt_50hz; static float maxSensedVelo = 1; static float synPosFilter = 0.5; #define NUM_G_SAMPLES 200 // Z damping term. static float fullDampP = 0.100; float get_world_Z_accel() { Vector3f accels_rot = dcm.get_dcm_matrix() * imu.get_accel(); return accels_rot.z; } static void init_z_damper() { estimatedAccelOffset = 0; for (int i = 0; i < NUM_G_SAMPLES; i++){ estimatedAccelOffset += get_world_Z_accel(); } estimatedAccelOffset /= (float)NUM_G_SAMPLES; } float dead_reckon_Z(float sensedPos, float sensedAccel) { // the following algorithm synthesizes position and velocity from // a noisy altitude and accelerometer data. // synthesize uncorrected velocity by integrating acceleration synVelo += (sensedAccel - estimatedAccelOffset) * dt_50hz; // synthesize uncorrected position by integrating uncorrected velocity synPos += synVelo * dt_50hz; // filter synPos, the better this filter matches the filtering and dead time // of the sensed position, the less the position estimate will lag. synPosFiltered = synPosFiltered * (1 - synPosFilter) + synPos * synPosFilter; // calculate error against sensor position posError = sensedPos - synPosFiltered; // correct altitude synPos += synPosP * posError; // correct integrated velocity by posError synVelo = synVelo + constrain(posError, -maxVeloCorrection, maxVeloCorrection) * synPosI; // correct integrated velocity by the sensed position delta in a small proportion // (i.e., the low frequency of the delta) float sensedVelo = (sensedPos - prevSensedPos) / dt_50hz; synVelo += constrain(sensedVelo - synVelo, -maxSensedVelo, maxSensedVelo) * synVeloP; prevSensedPos = sensedPos; return synVelo; } static int get_z_damping() { float sensedAccel = get_world_Z_accel(); float sensedPos = current_loc.alt / 100.0; float synVelo = dead_reckon_Z(sensedPos, sensedAccel); return constrain(fullDampP * synVelo * (-1), -300, 300); } #else static int get_z_damping() { return 0; } #endif