/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Plane.h" /* is_flying and crash detection logic */ #define CRASH_DETECTION_DELAY_MS 500 #define IS_FLYING_IMPACT_TIMER_MS 3000 /* Do we think we are flying? Probabilistic method where a bool is low-passed and considered a probability. */ void Plane::update_is_flying_5Hz(void) { float aspeed; bool is_flying_bool; uint32_t now_ms = AP_HAL::millis(); uint32_t ground_speed_thresh_cm = (g.min_gndspeed_cm > 0) ? ((uint32_t)(g.min_gndspeed_cm*0.9f)) : 500; bool gps_confirmed_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_3D) && (gps.ground_speed_cm() >= ground_speed_thresh_cm); // airspeed at least 75% of stall speed? bool airspeed_movement = ahrs.airspeed_estimate(&aspeed) && (aspeed >= (aparm.airspeed_min*0.75f)); if (quadplane.is_flying()) { is_flying_bool = true; } else if(arming.is_armed()) { // when armed assuming flying and we need overwhelming evidence that we ARE NOT flying // short drop-outs of GPS are common during flight due to banking which points the antenna in different directions bool gps_lost_recently = (gps.last_fix_time_ms() > 0) && // we have locked to GPS before (gps.status() < AP_GPS::GPS_OK_FIX_2D) && // and it's lost now (now_ms - gps.last_fix_time_ms() < 5000); // but it wasn't that long ago (<5s) if ((auto_state.last_flying_ms > 0) && gps_lost_recently) { // we've flown before, remove GPS constraints temporarily and only use airspeed is_flying_bool = airspeed_movement; // moving through the air } else { // we've never flown yet, require good GPS movement is_flying_bool = airspeed_movement || // moving through the air gps_confirmed_movement; // locked and we're moving } if (control_mode == AUTO) { /* make is_flying() more accurate during various auto modes */ // Detect X-axis deceleration for probable ground impacts. // Limit the max probability so it can decay faster. This // will not change the is_flying state, anything above 0.1 // is "true", it just allows it to decay faster once we decide we // aren't flying using the normal schemes if (g.crash_accel_threshold == 0) { crash_state.impact_detected = false; } else if (ins.get_accel_peak_hold_neg_x() < -(g.crash_accel_threshold)) { // large deceleration detected, lets lower confidence VERY quickly crash_state.impact_detected = true; crash_state.impact_timer_ms = now_ms; if (isFlyingProbability > 0.2f) { isFlyingProbability = 0.2f; } } else if (crash_state.impact_detected && (now_ms - crash_state.impact_timer_ms > IS_FLYING_IMPACT_TIMER_MS)) { // no impacts seen in a while, clear the flag so we stop clipping isFlyingProbability crash_state.impact_detected = false; } switch (flight_stage) { case AP_SpdHgtControl::FLIGHT_TAKEOFF: break; case AP_SpdHgtControl::FLIGHT_NORMAL: if (in_preLaunch_flight_stage()) { // while on the ground, an uncalibrated airspeed sensor can drift to 7m/s so // ensure we aren't showing a false positive. is_flying_bool = false; crash_state.is_crashed = false; auto_state.started_flying_in_auto_ms = 0; } break; case AP_SpdHgtControl::FLIGHT_VTOL: // TODO: detect ground impacts break; case AP_SpdHgtControl::FLIGHT_LAND_APPROACH: if (fabsf(auto_state.sink_rate) > 0.2f) { is_flying_bool = true; } break; case AP_SpdHgtControl::FLIGHT_LAND_PREFLARE: case AP_SpdHgtControl::FLIGHT_LAND_FINAL: break; case AP_SpdHgtControl::FLIGHT_LAND_ABORT: if (auto_state.sink_rate < -0.5f) { // steep climb is_flying_bool = true; } break; default: break; } // switch } } else { // when disarmed assume not flying and need overwhelming evidence that we ARE flying is_flying_bool = airspeed_movement && gps_confirmed_movement; if ((control_mode == AUTO) && ((flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF) || (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL)) ) { is_flying_bool = false; } } if (!crash_state.impact_detected || !is_flying_bool) { // when impact is detected, enforce a clip. Only allow isFlyingProbability to go down, not up. // low-pass the result. // coef=0.15f @ 5Hz takes 3.0s to go from 100% down to 10% (or 0% up to 90%) isFlyingProbability = (0.85f * isFlyingProbability) + (0.15f * (float)is_flying_bool); } /* update last_flying_ms so we always know how long we have not been flying for. This helps for crash detection and auto-disarm */ bool new_is_flying = is_flying(); // we are flying, note the time if (new_is_flying) { auto_state.last_flying_ms = now_ms; if (!previous_is_flying) { // just started flying in any mode started_flying_ms = now_ms; } if ((control_mode == AUTO) && ((auto_state.started_flying_in_auto_ms == 0) || !previous_is_flying) ) { // We just started flying, note that time also auto_state.started_flying_in_auto_ms = now_ms; } } previous_is_flying = new_is_flying; crash_detection_update(); if (should_log(MASK_LOG_MODE)) { Log_Write_Status(); } } /* return true if we think we are flying. This is a probabilistic estimate, and needs to be used very carefully. Each use case needs to be thought about individually. */ bool Plane::is_flying(void) { if (hal.util->get_soft_armed()) { if (quadplane.is_flying_vtol()) { return true; } // when armed, assume we're flying unless we probably aren't return (isFlyingProbability >= 0.1f); } // when disarmed, assume we're not flying unless we probably are return (isFlyingProbability >= 0.9f); } /* * Determine if we have crashed */ void Plane::crash_detection_update(void) { if (control_mode != AUTO || !g.crash_detection_enable) { // crash detection is only available in AUTO mode crash_state.debounce_timer_ms = 0; crash_state.is_crashed = false; return; } uint32_t now_ms = AP_HAL::millis(); bool crashed_near_land_waypoint = false; bool crashed = false; bool been_auto_flying = (auto_state.started_flying_in_auto_ms > 0) && (now_ms - auto_state.started_flying_in_auto_ms >= 2500); if (!is_flying() && arming.is_armed()) { switch (flight_stage) { case AP_SpdHgtControl::FLIGHT_TAKEOFF: if (g.takeoff_throttle_min_accel > 0 && !throttle_suppressed) { // if you have an acceleration holding back throttle, but you met the // accel threshold but still not fying, then you either shook/hit the // plane or it was a failed launch. crashed = true; crash_state.debounce_time_total_ms = CRASH_DETECTION_DELAY_MS; } // TODO: handle auto missions without NAV_TAKEOFF mission cmd break; case AP_SpdHgtControl::FLIGHT_NORMAL: if (!in_preLaunch_flight_stage() && been_auto_flying) { crashed = true; crash_state.debounce_time_total_ms = CRASH_DETECTION_DELAY_MS; } break; case AP_SpdHgtControl::FLIGHT_VTOL: // we need a totally new method for this crashed = false; break; case AP_SpdHgtControl::FLIGHT_LAND_APPROACH: if (been_auto_flying) { crashed = true; crash_state.debounce_time_total_ms = CRASH_DETECTION_DELAY_MS; } // when altitude gets low, we automatically progress to FLIGHT_LAND_FINAL // so ground crashes most likely can not be triggered from here. However, // a crash into a tree would be caught here. break; case AP_SpdHgtControl::FLIGHT_LAND_PREFLARE: case AP_SpdHgtControl::FLIGHT_LAND_FINAL: // We should be nice and level-ish in this flight stage. If not, we most // likely had a crazy landing. Throttle is inhibited already at the flare // but go ahead and notify GCS and perform any additional post-crash actions. // Declare a crash if we are oriented more that 60deg in pitch or roll if (!crash_state.checkedHardLanding && // only check once been_auto_flying && (labs(ahrs.roll_sensor) > 6000 || labs(ahrs.pitch_sensor) > 6000)) { crashed = true; crash_state.debounce_time_total_ms = CRASH_DETECTION_DELAY_MS; // did we "crash" within 75m of the landing location? Probably just a hard landing crashed_near_land_waypoint = get_distance(current_loc, mission.get_current_nav_cmd().content.location) < 75; // trigger hard landing event right away, or never again. This inhibits a false hard landing // event when, for example, a minute after a good landing you pick the plane up and // this logic is still running and detects the plane is on its side as you carry it. crash_state.debounce_timer_ms = now_ms + CRASH_DETECTION_DELAY_MS; } crash_state.checkedHardLanding = true; break; default: break; } // switch } else { crash_state.checkedHardLanding = false; } if (!crashed) { // reset timer crash_state.debounce_timer_ms = 0; } else if (crash_state.debounce_timer_ms == 0) { // start timer crash_state.debounce_timer_ms = now_ms; } else if ((now_ms - crash_state.debounce_timer_ms >= crash_state.debounce_time_total_ms) && !crash_state.is_crashed) { crash_state.is_crashed = true; if (g.crash_detection_enable == CRASH_DETECT_ACTION_BITMASK_DISABLED) { if (crashed_near_land_waypoint) { gcs_send_text(MAV_SEVERITY_CRITICAL, "Hard landing detected. No action taken"); } else { gcs_send_text(MAV_SEVERITY_EMERGENCY, "Crash detected. No action taken"); } } else { if (g.crash_detection_enable & CRASH_DETECT_ACTION_BITMASK_DISARM) { disarm_motors(); } auto_state.land_complete = true; if (crashed_near_land_waypoint) { gcs_send_text(MAV_SEVERITY_CRITICAL, "Hard landing detected"); } else { gcs_send_text(MAV_SEVERITY_EMERGENCY, "Crash detected"); } } } } /* * return true if we are in a pre-launch phase of an auto-launch, typically used in bungee launches */ bool Plane::in_preLaunch_flight_stage(void) { return (control_mode == AUTO && throttle_suppressed && flight_stage == AP_SpdHgtControl::FLIGHT_NORMAL && mission.get_current_nav_cmd().id == MAV_CMD_NAV_TAKEOFF); }