// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- /// @file AC_PID.h /// @brief Generic PID algorithm, with EEPROM-backed storage of constants. #ifndef AC_PID_h #define AC_PID_h #include #include // for fabs() /// @class AC_PID /// @brief Object managing one PID control class AC_PID { public: /// Constructor for PID that saves its settings to EEPROM /// /// @note PIDs must be named to avoid either multiple parameters with the /// same name, or an overly complex constructor. /// /// @param initial_p Initial value for the P term. /// @param initial_i Initial value for the I term. /// @param initial_d Initial value for the D term. /// @param initial_imax Initial value for the imax term.4 /// AC_PID( const float &initial_p = 0.0, const float &initial_i = 0.0, const float &initial_d = 0.0, const int16_t &initial_imax = 0.0) : _kp (initial_p), _ki (initial_i), _kd (initial_d), _imax(initial_imax) { // no need for explicit load, assuming that the main code uses AP_Param::load_all. } /// Iterate the PID, return the new control value /// /// Positive error produces positive output. /// /// @param error The measured error value /// @param dt The time delta in milliseconds (note /// that update interval cannot be more /// than 65.535 seconds due to limited range /// of the data type). /// @param scaler An arbitrary scale factor /// /// @returns The updated control output. /// int32_t get_pid(int32_t error, float dt); int32_t get_pi(int32_t error, float dt); int32_t get_p(int32_t error); int32_t get_i(int32_t error, float dt); int32_t get_d(int32_t error, float dt); /// Reset the PID integrator /// void reset_I(); /// Load gain properties /// void load_gains(); /// Save gain properties /// void save_gains(); /// @name parameter accessors //@{ /// Overload the function call operator to permit relatively easy initialisation void operator() (const float p, const float i, const float d, const int16_t imaxval) { _kp = p; _ki = i; _kd = d; _imax = imaxval; } float kP() const { return _kp.get(); } float kI() const { return _ki.get(); } float kD() const { return _kd.get(); } int16_t imax() const { return _imax.get(); } void kP(const float v) { _kp.set(v); } void kI(const float v) { _ki.set(v); } void kD(const float v) { _kd.set(v); } void imax(const int16_t v) { _imax.set(abs(v)); } float get_integrator() const { return _integrator; } void set_integrator(float i) { _integrator = i; } static const struct AP_Param::GroupInfo var_info[]; private: AP_Float _kp; AP_Float _ki; AP_Float _kd; AP_Int16 _imax; float _integrator; ///< integrator value int32_t _last_input; ///< last input for derivative float _last_derivative; ///< last derivative for low-pass filter float _output; float _derivative; /// Low pass filter cut frequency for derivative calculation. /// static const float _filter = 7.9577e-3; // Set to "1 / ( 2 * PI * f_cut )"; // Examples for _filter: // f_cut = 10 Hz -> _filter = 15.9155e-3 // f_cut = 15 Hz -> _filter = 10.6103e-3 // f_cut = 20 Hz -> _filter = 7.9577e-3 // f_cut = 25 Hz -> _filter = 6.3662e-3 // f_cut = 30 Hz -> _filter = 5.3052e-3 }; #endif