/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #ifndef Mavlink_Common_H #define Mavlink_Common_H #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK || GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK byte mavdelay = 0; // what does this do? static uint8_t mavlink_check_target(uint8_t sysid, uint8_t compid) { //Serial.print("target = "); Serial.print(sysid, DEC); Serial.print("\tcomp = "); Serial.println(compid, DEC); if (sysid != mavlink_system.sysid){ return 1; }else if(compid != mavlink_system.compid){ gcs.send_text_P(SEVERITY_LOW,PSTR("component id mismatch")); return 0; // XXX currently not receiving correct compid from gcs }else{ return 0; // no error } } void mavlink_send_message(mavlink_channel_t chan, uint8_t id, uint32_t param, uint16_t packet_drops) { uint64_t timeStamp = micros(); switch(id) { case MSG_HEARTBEAT: mavlink_msg_heartbeat_send( chan, mavlink_system.type, MAV_AUTOPILOT_ARDUPILOTMEGA); break; case MSG_EXTENDED_STATUS: { uint8_t mode = MAV_MODE_UNINIT; uint8_t nav_mode = MAV_NAV_VECTOR; switch(control_mode) { case ACRO: mode = MAV_MODE_MANUAL; break; case STABILIZE: mode = MAV_MODE_GUIDED; break; case SIMPLE: mode = MAV_MODE_TEST1; break; case ALT_HOLD: mode = MAV_MODE_TEST2; break; case LOITER: mode = MAV_MODE_AUTO; nav_mode = MAV_NAV_HOLD; break; case AUTO: mode = MAV_MODE_AUTO; nav_mode = MAV_NAV_WAYPOINT; break; case RTL: mode = MAV_MODE_AUTO; nav_mode = MAV_NAV_RETURNING; break; } uint8_t status = MAV_STATE_ACTIVE; uint16_t battery_remaining = 10.0 * (float)(g.pack_capacity - current_total)/g.pack_capacity; //Mavlink scaling 100% = 1000 uint8_t motor_block = false; mavlink_msg_sys_status_send( chan, mode, nav_mode, status, load * 1000, battery_voltage * 1000, motor_block, packet_drops); break; } case MSG_ATTITUDE: { //Vector3f omega = dcm.get_gyro(); mavlink_msg_attitude_send( chan, timeStamp, dcm.roll, dcm.pitch, dcm.yaw, omega.x, omega.y, omega.z); break; } case MSG_LOCATION: { Matrix3f rot = dcm.get_dcm_matrix(); // neglecting angle of attack for now mavlink_msg_global_position_int_send( chan, current_loc.lat, current_loc.lng, current_loc.alt * 10, g_gps->ground_speed * rot.a.x, g_gps->ground_speed * rot.b.x, g_gps->ground_speed * rot.c.x); break; } case MSG_NAV_CONTROLLER_OUTPUT: { //if (control_mode != MANUAL) { mavlink_msg_nav_controller_output_send( chan, nav_roll / 1.0e2, nav_pitch / 1.0e2, nav_bearing / 1.0e2, target_bearing / 1.0e2, wp_distance, altitude_error / 1.0e2, 0, crosstrack_error); //} break; } case MSG_LOCAL_LOCATION: { Matrix3f rot = dcm.get_dcm_matrix(); // neglecting angle of attack for now mavlink_msg_local_position_send( chan, timeStamp, ToRad((current_loc.lat - home.lat) / 1.0e7) * radius_of_earth, ToRad((current_loc.lng - home.lng) / 1.0e7) * radius_of_earth * cos(ToRad(home.lat / 1.0e7)), (current_loc.alt - home.alt) / 1.0e2, g_gps->ground_speed / 1.0e2 * rot.a.x, g_gps->ground_speed / 1.0e2 * rot.b.x, g_gps->ground_speed / 1.0e2 * rot.c.x); break; } case MSG_GPS_RAW: { mavlink_msg_gps_raw_send( chan, timeStamp, g_gps->status(), g_gps->latitude / 1.0e7, g_gps->longitude / 1.0e7, g_gps->altitude / 100.0, g_gps->hdop, 0.0, g_gps->ground_speed / 100.0, g_gps->ground_course / 100.0); break; } case MSG_SERVO_OUT: { uint8_t rssi = 1; // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with HIL maintainers mavlink_msg_rc_channels_scaled_send( chan, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), 0, 0, 0, 0, rssi); break; } case MSG_RADIO_IN: { uint8_t rssi = 1; mavlink_msg_rc_channels_raw_send( chan, g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in, rssi); break; } case MSG_RADIO_OUT: { mavlink_msg_servo_output_raw_send( chan, motor_out[0], motor_out[1], motor_out[2], motor_out[3], motor_out[4], motor_out[5], motor_out[6], motor_out[7]); break; } case MSG_VFR_HUD: { mavlink_msg_vfr_hud_send( chan, (float)airspeed / 100.0, (float)g_gps->ground_speed / 100.0, (dcm.yaw_sensor / 100) % 360, nav_throttle, current_loc.alt / 100.0, climb_rate); break; } #if HIL_MODE != HIL_MODE_ATTITUDE case MSG_RAW_IMU: { Vector3f accel = imu.get_accel(); Vector3f gyro = imu.get_gyro(); //Serial.printf_P(PSTR("sending accel: %f %f %f\n"), accel.x, accel.y, accel.z); //Serial.printf_P(PSTR("sending gyro: %f %f %f\n"), gyro.x, gyro.y, gyro.z); mavlink_msg_raw_imu_send( chan, timeStamp, accel.x * 1000.0 / gravity, accel.y * 1000.0 / gravity, accel.z * 1000.0 / gravity, gyro.x * 1000.0, gyro.y * 1000.0, gyro.z * 1000.0, compass.mag_x, compass.mag_y, compass.mag_z); mavlink_msg_raw_pressure_send( chan, timeStamp, adc.Ch(AIRSPEED_CH), barometer.RawPress, 0, 0); break; } #endif // HIL_PROTOCOL != HIL_PROTOCOL_ATTITUDE case MSG_GPS_STATUS: { mavlink_msg_gps_status_send( chan, g_gps->num_sats, NULL, NULL, NULL, NULL, NULL); break; } case MSG_CURRENT_WAYPOINT: { mavlink_msg_waypoint_current_send( chan, g.waypoint_index); break; } default: break; } } void mavlink_send_text(mavlink_channel_t chan, uint8_t severity, const char *str) { mavlink_msg_statustext_send( chan, severity, (const int8_t*) str); } void mavlink_acknowledge(mavlink_channel_t chan, uint8_t id, uint8_t sum1, uint8_t sum2) { } #endif // mavlink in use #endif // inclusion guard