// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Copyright 2010 Michael Smith, all rights reserved. // Derived closely from: /**************************************** * 3D Vector Classes * By Bill Perone (billperone@yahoo.com) * Original: 9-16-2002 * Revised: 19-11-2003 * 11-12-2003 * 18-12-2003 * 06-06-2004 * * © 2003, This code is provided "as is" and you can use it freely as long as * credit is given to Bill Perone in the application it is used in * * Notes: * if a*b = 0 then a & b are orthogonal * a%b = -b%a * a*(b%c) = (a%b)*c * a%b = a(cast to matrix)*b * (a%b).length() = area of parallelogram formed by a & b * (a%b).length() = a.length()*b.length() * sin(angle between a & b) * (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0 * a * (b%c) = volume of parallelpiped formed by a, b, c * vector triple product: a%(b%c) = b*(a*c) - c*(a*b) * scalar triple product: a*(b%c) = c*(a%b) = b*(c%a) * vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c) * if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0 * vectors a1...an are linearly dependent if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0 * or if the matrix (A) * b = 0 * ****************************************/ #pragma once #include #include #include #if MATH_CHECK_INDEXES #include #endif #include "rotations.h" template class Matrix3; template class Vector3 { public: T x, y, z; // trivial ctor Vector3() { x = y = z = 0; } // setting ctor Vector3(const T x0, const T y0, const T z0) : x(x0), y(y0), z(z0) { } // function call operator void operator ()(const T x0, const T y0, const T z0) { x= x0; y= y0; z= z0; } // test for equality bool operator ==(const Vector3 &v) const; // test for inequality bool operator !=(const Vector3 &v) const; // negation Vector3 operator -(void) const; // addition Vector3 operator +(const Vector3 &v) const; // subtraction Vector3 operator -(const Vector3 &v) const; // uniform scaling Vector3 operator *(const T num) const; // uniform scaling Vector3 operator /(const T num) const; // addition Vector3 &operator +=(const Vector3 &v); // subtraction Vector3 &operator -=(const Vector3 &v); // uniform scaling Vector3 &operator *=(const T num); // uniform scaling Vector3 &operator /=(const T num); // allow a vector3 to be used as an array, 0 indexed T & operator[](uint8_t i) { T *_v = &x; #if MATH_CHECK_INDEXES assert(i >= 0 && i < 3); #endif return _v[i]; } const T & operator[](uint8_t i) const { const T *_v = &x; #if MATH_CHECK_INDEXES assert(i >= 0 && i < 3); #endif return _v[i]; } // dot product T operator *(const Vector3 &v) const; // multiply a row vector by a matrix, to give a row vector Vector3 operator *(const Matrix3 &m) const; // multiply a column vector by a row vector, returning a 3x3 matrix Matrix3 mul_rowcol(const Vector3 &v) const; // cross product Vector3 operator %(const Vector3 &v) const; // computes the angle between this vector and another vector float angle(const Vector3 &v2) const; // check if any elements are NAN bool is_nan(void) const; // check if any elements are infinity bool is_inf(void) const; // check if all elements are zero bool is_zero(void) const { return (fabsf(x) < FLT_EPSILON) && (fabsf(y) < FLT_EPSILON) && (fabsf(z) < FLT_EPSILON); } // rotate by a standard rotation void rotate(enum Rotation rotation); void rotate_inverse(enum Rotation rotation); // gets the length of this vector squared T length_squared() const { return (T)(*this * *this); } // gets the length of this vector float length(void) const; // normalizes this vector void normalize() { *this /= length(); } // zero the vector void zero() { x = y = z = 0; } // returns the normalized version of this vector Vector3 normalized() const { return *this/length(); } // reflects this vector about n void reflect(const Vector3 &n) { Vector3 orig(*this); project(n); *this = *this*2 - orig; } // projects this vector onto v void project(const Vector3 &v) { *this= v * (*this * v)/(v*v); } // returns this vector projected onto v Vector3 projected(const Vector3 &v) const { return v * (*this * v)/(v*v); } }; typedef Vector3 Vector3i; typedef Vector3 Vector3ui; typedef Vector3 Vector3l; typedef Vector3 Vector3ul; typedef Vector3 Vector3f; typedef Vector3 Vector3d;