#include <AP_gtest.h> #define ALLOW_DOUBLE_MATH_FUNCTIONS #include <AP_Math/AP_Math.h> const AP_HAL::HAL& hal = AP_HAL::get_HAL(); TEST(Vector3Test, Operator) { Vector3f v_float0{1.0f, 1.0f,1.0f}; EXPECT_FALSE(v_float0.is_zero()); v_float0 = Vector3f(); EXPECT_TRUE(v_float0.is_zero()); v_float0[1] = 1.0f; EXPECT_FALSE(v_float0.is_zero()); const float testf1 = v_float0[1]; EXPECT_TRUE(is_equal(testf1, 1.0f)); v_float0.zero(); EXPECT_TRUE(v_float0.is_zero()); Vector3i v_inti1{1, 1, 1}; EXPECT_FALSE(v_inti1.is_zero()); v_inti1 = Vector3i(); EXPECT_TRUE(v_inti1.is_zero()); v_inti1[0] = 1; EXPECT_FALSE(v_inti1.is_zero()); const int16_t testi1 = v_inti1[0]; EXPECT_TRUE(1 == testi1); v_inti1.zero(); EXPECT_TRUE(v_inti1.is_zero()); Vector3ui v_uinti1{1u, 1u, 1u}; EXPECT_FALSE(v_uinti1.is_zero()); v_uinti1 = Vector3ui(); EXPECT_TRUE(v_uinti1.is_zero()); v_uinti1[0] = 1u; EXPECT_FALSE(v_uinti1.is_zero()); const uint16_t testui1 = v_uinti1[0]; EXPECT_TRUE(1u == testui1); v_uinti1.zero(); EXPECT_TRUE(v_uinti1.is_zero()); Vector3l v_intl1{1, 1, 1}; EXPECT_FALSE(v_intl1.is_zero()); v_intl1 = Vector3l(); EXPECT_TRUE(v_intl1.is_zero()); v_intl1[0] = 1; EXPECT_FALSE(v_intl1.is_zero()); const int32_t testl1 = v_intl1[0]; EXPECT_TRUE(1 == testl1); v_intl1.zero(); EXPECT_TRUE(v_intl1.is_zero()); Vector3ul v_uint1l{1, 1, 1}; EXPECT_FALSE(v_uint1l.is_zero()); v_uint1l = Vector3ul(); EXPECT_TRUE(v_uint1l.is_zero()); v_uint1l[0] = 1; EXPECT_FALSE(v_uint1l.is_zero()); const uint32_t testul1 = v_uint1l[0]; EXPECT_TRUE(1 == testul1); v_uint1l.zero(); EXPECT_TRUE(v_uint1l.is_zero()); Vector3f v_float1(1.0f, 1.0f, 1.0f); Vector3f v_float2(1.0f, 1.0f, 0.0f); EXPECT_FLOAT_EQ(2.0f, v_float1 * v_float2); EXPECT_TRUE(Vector3f(-1.0f, 1.0f, 0.0f) == v_float1 % v_float2); v_float1 *= 2.0f; EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) == v_float1); v_float1 /= 2.0f; EXPECT_TRUE(Vector3f(1.0f, 1.0f, 1.0f) == v_float1); v_float1 -= v_float2; EXPECT_TRUE(Vector3f(0.0f, 0.0f, 1.0f) == v_float1); v_float1 += v_float2; EXPECT_TRUE(Vector3f(1.0f, 1.0f, 1.0f) == v_float1); EXPECT_TRUE(Vector3f(nanf("0x4152"), 1.0f, 1.0f).is_nan()); EXPECT_TRUE(Vector3f(1.0f / 0.0f, 1.0f, 1.0f).is_inf()); EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) / 2.0f == v_float1); EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) == v_float1 * 2.0f); EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) - v_float1 == v_float1); EXPECT_TRUE(Vector3f(2.0f, 2.0f, 2.0f) == v_float1 + v_float1); EXPECT_TRUE(Vector3f(-1.0f, -1.0f, -1.0f) == -v_float1); v_float1.zero(); EXPECT_TRUE(v_float1.is_zero()); } TEST(Vector3Test, OperatorDouble) { Vector3d v_double0{1.0, 1.0,1.0}; EXPECT_FALSE(v_double0.is_zero()); v_double0 = Vector3d(); EXPECT_TRUE(v_double0.is_zero()); v_double0[1] = 1.0; EXPECT_FALSE(v_double0.is_zero()); const double testf1 = v_double0[1]; EXPECT_TRUE(is_equal(testf1, 1.0)); v_double0.zero(); EXPECT_TRUE(v_double0.is_zero()); Vector3d v_double1(1.0, 1.0, 1.0); Vector3d v_double2(1.0, 1.0, 0.0); EXPECT_FLOAT_EQ(2.0, v_double1 * v_double2); EXPECT_TRUE(Vector3d(-1.0, 1.0, 0.0) == v_double1 % v_double2); v_double1 *= 2.0; EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) == v_double1); v_double1 /= 2.0; EXPECT_TRUE(Vector3d(1.0, 1.0, 1.0) == v_double1); v_double1 -= v_double2; EXPECT_TRUE(Vector3d(0.0, 0.0, 1.0) == v_double1); v_double1 += v_double2; EXPECT_TRUE(Vector3d(1.0, 1.0, 1.0) == v_double1); EXPECT_TRUE(Vector3d(nan("0x4152"), 1.0, 1.0).is_nan()); EXPECT_TRUE(Vector3d(1.0 / 0.0, 1.0, 1.0).is_inf()); EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) / 2.0 == v_double1); EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) == v_double1 * 2.0); EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) - v_double1 == v_double1); EXPECT_TRUE(Vector3d(2.0, 2.0, 2.0) == v_double1 + v_double1); EXPECT_TRUE(Vector3d(-1.0, -1.0, -1.0) == -v_double1); v_double1.zero(); EXPECT_TRUE(v_double1.is_zero()); } TEST(Vector3Test, IsEqual) { Vector3f v_float1(1.0f, 1.0f, 1.0f); Vector3f v_float2(1.0f, 1.0f, 0.0f); EXPECT_FALSE(v_float1 == v_float2); EXPECT_TRUE(v_float1 == v_float1); EXPECT_TRUE(v_float1 != v_float2); EXPECT_FALSE(v_float1 != v_float1); Vector3d v_double1(1.0, 1.0, 1.0); Vector3d v_double2(1.0, 1.0, 0.0); EXPECT_FALSE(v_double1 == v_double2); EXPECT_TRUE(v_double1 == v_double1); EXPECT_TRUE(v_double1 != v_double2); EXPECT_FALSE(v_double1 != v_double1); } /* TEST(Vector3Test, angle) { EXPECT_FLOAT_EQ(M_PI/2, Vector3f(0.0f, 1.0f).angle(Vector3f(1.0f, 0.0f))); EXPECT_FLOAT_EQ(0.0f, Vector3f(0.5f, 0.5f).angle(Vector3f(0.5f, 0.5f))); EXPECT_FLOAT_EQ(M_PI, Vector3f(0.5f, -0.5f).angle(Vector3f(-0.5f, 0.5f))); EXPECT_FLOAT_EQ(0.0f, Vector3f(-0.0f, 0).angle(Vector3f(0.0f, 1.0f))); } */ TEST(Vector3Test, length) { EXPECT_FLOAT_EQ(12, Vector3f(2, 2, 2).length_squared()); EXPECT_FLOAT_EQ(sqrtf(12), Vector3f(2, 2, 2).length()); Vector3f v_float1(1.0f, 1.0f, 1.0f); EXPECT_TRUE(v_float1.limit_length_xy(1.0f)); EXPECT_FALSE(Vector3f(-0.0f, -0.0f, -0.0f).limit_length_xy(1.0f)); EXPECT_DOUBLE_EQ(12, Vector3d(2, 2, 2).length_squared()); EXPECT_FLOAT_EQ(sqrt(12), Vector3d(2, 2, 2).length()); Vector3d v_double1(1.0, 1.0, 1.0); EXPECT_TRUE(v_double1.limit_length_xy(1.0)); EXPECT_FALSE(Vector3d(-0.0, -0.0, -0.0).limit_length_xy(1.0)); } TEST(Vector3Test, normalized) { Vector3f v_float1(3.0f, 3.0f, 3.0f); v_float1.normalize(); EXPECT_EQ(Vector3f(3.0f, 3.0f, 3.0f).normalized(), v_float1); EXPECT_EQ(Vector3f(1 / sqrtf(3), 1 / sqrtf(3), 1 / sqrtf(3)), Vector3f(2, 2, 2).normalized()); EXPECT_EQ(Vector3f(3, 3, 3).normalized(), Vector3f(5, 5, 5).normalized()); EXPECT_EQ(Vector3f(-3, 3, 3).normalized(), Vector3f(-5, 5, 5).normalized()); EXPECT_NE(Vector3f(-3, 3, 3).normalized(), Vector3f(5, 5, 5).normalized()); } /* TEST(Vector3Test, Project) { Vector3f v_float1(1.0f, 1.0f, 1.0f); Vector3f v_float2(2.0f, 2.0f, 1.0f); v_float1.project(v_float2); EXPECT_EQ(Vector3f(1.0f, 1.0f, 1.0f).projected(v_float2), v_float1); } TEST(Vector3Test, reflect) { Vector3f reflected1 = Vector3f(3, 3, 8); reflected1.reflect(Vector3f(0, 0, 1)); EXPECT_EQ(reflected1, Vector3f(-3, -3, 8)); // colinear vectors Vector3f reflected2 = Vector3f(3, 3, 3); reflected2.reflect(Vector3f(1, 1, 1)); EXPECT_EQ(reflected2, Vector3f(3, 3, 3)); // orthogonal vectors Vector3f reflected3 = Vector3f(3, 3, 3); reflected3.reflect(Vector3f(1, 1, -1)); EXPECT_EQ(reflected3, Vector3f(-3, -3, -3)); // rotation Vector3f base = Vector3f(2, 2, 1); base.rotate(radians(90)); EXPECT_FLOAT_EQ(base.x, -1); EXPECT_FLOAT_EQ(base.y, 2); EXPECT_FLOAT_EQ(base.z, 2); } TEST(Vector3Test, Offset_bearing) { Vector3f v_float1(1.0f, 0.0f); v_float1.offset_bearing(0.0f, 1.0f); EXPECT_EQ(Vector3f(2.0f, 0.0f), v_float1); } TEST(Vector3Test, Perpendicular) { Vector3f v_float1(1.0f, 1.0f); EXPECT_EQ(Vector3f(0.0f, 2.0f), v_float1.perpendicular(v_float1, Vector3f(2.0f, 0.0f))); EXPECT_EQ(Vector3f(2.0f, 0.0f), v_float1.perpendicular(v_float1, Vector3f(0.0f, 2.0f))); } TEST(Vector3Test, closest_point) { // closest_point is (p, v,w) // the silly case: EXPECT_EQ((Vector3f{0, 0}), (Vector3f::closest_point(Vector3f{0, 0}, Vector3f{0, 0}, Vector3f{0, 0}))); // on line: EXPECT_EQ((Vector3f{0, 0}), (Vector3f::closest_point(Vector3f{0, 0}, Vector3f{0, 0}, Vector3f{1, 1}))); EXPECT_EQ((Vector3f{5, 5}), (Vector3f::closest_point(Vector3f{5, 5}, Vector3f{0, 0}, Vector3f{5, 5}))); // on line but not segment: EXPECT_EQ((Vector3f{5, 5}), (Vector3f::closest_point(Vector3f{6, 6}, Vector3f{0, 0}, Vector3f{5, 5}))); EXPECT_EQ((Vector3f{0.5, 0.5}), (Vector3f::closest_point(Vector3f{1,0}, Vector3f{0, 0}, Vector3f{5, 5}))); EXPECT_EQ((Vector3f{0, 1}), (Vector3f::closest_point(Vector3f{0,0}, Vector3f{-1, 1}, Vector3f{1, 1}))); // to (0,w) // the silly case: EXPECT_EQ((Vector3f{0, 0}), (Vector3f::closest_point(Vector3f{0, 0}, Vector3f{0, 0}))); // on line: EXPECT_EQ((Vector3f{0, 0}), (Vector3f::closest_point(Vector3f{0, 0}, Vector3f{1, 1}))); EXPECT_EQ((Vector3f{5, 5}), (Vector3f::closest_point(Vector3f{5, 5}, Vector3f{5, 5}))); // on line but not segment: EXPECT_EQ((Vector3f{5, 5}), (Vector3f::closest_point(Vector3f{6, 6}, Vector3f{5, 5}))); EXPECT_EQ((Vector3f{0.5, 0.5}), (Vector3f::closest_point(Vector3f{1,0}, Vector3f{5, 5}))); EXPECT_EQ((Vector3f{0, 0}), (Vector3f::closest_point(Vector3f{0,0}, Vector3f{1, 1}))); } TEST(Vector3Test, closest_distance) { EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_line_and_point_squared(Vector3f{0,0}, Vector3f{1, 0}, Vector3f{0, 1})); EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_line_and_point(Vector3f{0,0}, Vector3f{1, 0}, Vector3f{0, 1})); EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_lines_squared(Vector3f{0,0}, Vector3f{1, 0}, Vector3f{0, 1}, Vector3f{1, 1})); EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_radial_and_point_squared(Vector3f{0, 1}, Vector3f{1, 1})); EXPECT_FLOAT_EQ(1.0f, Vector3f::closest_distance_between_radial_and_point(Vector3f{0, 1}, Vector3f{1, 1})); } TEST(Vector3Test, segment_intersectionx) { Vector3f intersection; EXPECT_EQ(Vector3f::segment_intersection( Vector3f{-1.0f, 0.0f}, // seg start Vector3f{1.0f, 0.0f}, // seg end Vector3f{0.0f, -1.0f}, // seg start Vector3f{0.0f, 1.0f}, // seg end intersection // return value for intersection point ), true); EXPECT_EQ(intersection, Vector3f(0.0f, 0.0f)); EXPECT_EQ(Vector3f::segment_intersection( Vector3f{1.0f, 0.0f}, // seg start Vector3f{2.0f, 0.0f}, // seg end Vector3f{0.0f, -1.0f}, // seg start Vector3f{0.0f, 1.0f}, // seg end intersection // return value for intersection point ), false); EXPECT_EQ(Vector3f::segment_intersection( Vector3f{1.0f, 0.0f}, // seg start Vector3f{2.0f, 0.0f}, // seg end Vector3f{1.0f, 1.0f}, // seg start Vector3f{2.0f, 1.0f}, // seg end intersection // return value for intersection point ), false); } TEST(Vector3Test, circle_segment_intersectionx) { Vector3f intersection; EXPECT_EQ(Vector3f::circle_segment_intersection( Vector3f{0,0}, // seg start Vector3f{1,1}, // seg end Vector3f{0,0}, // circle center 0.5, // circle radius intersection // return value for intersection point ), true); EXPECT_EQ(intersection, Vector3f(sqrtf(0.5)/2,sqrtf(0.5)/2)); EXPECT_EQ(Vector3f::circle_segment_intersection( Vector3f{std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN()}, // seg start Vector3f{1,1}, // seg end Vector3f{0,0}, // circle center 0.5, // circle radius intersection // return value for intersection point ), false); } TEST(Vector3Test, point_on_segmentx) { EXPECT_EQ(Vector3f::point_on_segment( Vector3f{0.0f, 1.0f}, // point Vector3f{0.0f, 0.0f}, // seg start Vector3f{0.0f, 2.0f} // seg end ), true); EXPECT_EQ(Vector3f::point_on_segment( Vector3f{1.0f, 1.0f}, // point Vector3f{0.0f, 0.0f}, // seg start Vector3f{0.0f, 2.0f} // seg end ), false); EXPECT_EQ(Vector3f::point_on_segment( Vector3f{1.0f, 1.0f}, // point Vector3f{0.0f, 0.0f}, // seg start Vector3f{3.0f, 1.0f} // seg end ), false); printf("4\n"); EXPECT_EQ(Vector3f::point_on_segment( Vector3f{1.0f, 0.0f}, // point Vector3f{2.0f, 1.0f}, // seg start Vector3f{3.0f, 2.0f} // seg end ), false); EXPECT_EQ(Vector3f::point_on_segment( Vector3f{5.0f, 0.0f}, // point Vector3f{4.0f, 1.0f}, // seg start Vector3f{3.0f, 2.0f} // seg end ), false); EXPECT_EQ(Vector3f::point_on_segment( Vector3f{3.0f, 0.0f}, // point Vector3f{3.0f, 1.0f}, // seg start Vector3f{3.0f, 2.0f} // seg end ), false); EXPECT_EQ(Vector3f::point_on_segment( Vector3f{3.0f, 0.0f}, // point Vector3f{3.0f, 2.0f}, // seg start Vector3f{3.0f, 1.0f} // seg end ), false); } */ AP_GTEST_MAIN()