// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); static int8_t test_radio(uint8_t argc, const Menu::arg *argv); static int8_t test_passthru(uint8_t argc, const Menu::arg *argv); static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); static int8_t test_gps(uint8_t argc, const Menu::arg *argv); static int8_t test_ins(uint8_t argc, const Menu::arg *argv); static int8_t test_battery(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv); static int8_t test_wp(uint8_t argc, const Menu::arg *argv); static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); static int8_t test_mag(uint8_t argc, const Menu::arg *argv); static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv); static int8_t test_logging(uint8_t argc, const Menu::arg *argv); #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 static int8_t test_shell(uint8_t argc, const Menu::arg *argv); #endif // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Common for implementation details static const struct Menu::command test_menu_commands[] PROGMEM = { {"pwm", test_radio_pwm}, {"radio", test_radio}, {"passthru", test_passthru}, {"failsafe", test_failsafe}, {"battery", test_battery}, {"relay", test_relay}, {"waypoints", test_wp}, {"modeswitch", test_modeswitch}, // Tests below here are for hardware sensors only present // when real sensors are attached or they are emulated {"gps", test_gps}, {"ins", test_ins}, {"sonartest", test_sonar}, {"compass", test_mag}, {"logging", test_logging}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 {"shell", test_shell}, #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); static int8_t test_mode(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Test Mode\n\n")); test_menu.run(); return 0; } static void print_hit_enter() { cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n")); } static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); cliSerial->printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), channel_steer->radio_in, g.rc_2.radio_in, channel_throttle->radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in); if(cliSerial->available() > 0){ return (0); } } } static int8_t test_passthru(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); // New radio frame? (we could use also if((millis()- timer) > 20) if (hal.rcin->valid_channels() > 0) { cliSerial->print("CH:"); for(int i = 0; i < 8; i++){ cliSerial->print(hal.rcin->read(i)); // Print channel values cliSerial->print(","); hal.rcout->write(i, hal.rcin->read(i)); // Copy input to Servos } cliSerial->println(); } if (cliSerial->available() > 0){ return (0); } } return 0; } static int8_t test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); // read the radio to set trims // --------------------------- trim_radio(); while(1){ delay(20); read_radio(); channel_steer->calc_pwm(); channel_throttle->calc_pwm(); // write out the servo PWM values // ------------------------------ set_servos(); tuning_value = constrain_float(((float)(g.rc_7.radio_in - g.rc_7.radio_min) / (float)(g.rc_7.radio_max - g.rc_7.radio_min)),0,1); cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d Tuning = %2.3f\n"), channel_steer->control_in, g.rc_2.control_in, channel_throttle->control_in, g.rc_4.control_in, g.rc_5.control_in, g.rc_6.control_in, g.rc_7.control_in, g.rc_8.control_in, tuning_value); if(cliSerial->available() > 0){ return (0); } } } static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv) { uint8_t fail_test; print_hit_enter(); for(int i = 0; i < 50; i++){ delay(20); read_radio(); } // read the radio to set trims // --------------------------- trim_radio(); oldSwitchPosition = readSwitch(); cliSerial->printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); while(channel_throttle->control_in > 0){ delay(20); read_radio(); } while(1){ delay(20); read_radio(); if(channel_throttle->control_in > 0){ cliSerial->printf_P(PSTR("THROTTLE CHANGED %d \n"), channel_throttle->control_in); fail_test++; } if (oldSwitchPosition != readSwitch()){ cliSerial->printf_P(PSTR("CONTROL MODE CHANGED: ")); print_mode(cliSerial, readSwitch()); cliSerial->println(); fail_test++; } if (g.fs_throttle_enabled && channel_throttle->get_failsafe()){ cliSerial->printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), channel_throttle->radio_in); print_mode(cliSerial, readSwitch()); cliSerial->println(); fail_test++; } if(fail_test > 0){ return (0); } if(cliSerial->available() > 0){ cliSerial->printf_P(PSTR("LOS caused no change in APM.\n")); return (0); } } } static int8_t test_battery(uint8_t argc, const Menu::arg *argv) { if (g.battery_monitoring == 3 || g.battery_monitoring == 4) { print_hit_enter(); while(1){ delay(100); read_radio(); read_battery(); if (g.battery_monitoring == 3){ cliSerial->printf_P(PSTR("V: %4.4f\n"), battery_voltage1, current_amps1, current_total1); } else { cliSerial->printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"), battery_voltage1, current_amps1, current_total1); } // write out the servo PWM values // ------------------------------ set_servos(); if(cliSerial->available() > 0){ return (0); } } } else { cliSerial->printf_P(PSTR("Not enabled\n")); return (0); } } static int8_t test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ cliSerial->printf_P(PSTR("Relay on\n")); relay.on(); delay(3000); if(cliSerial->available() > 0){ return (0); } cliSerial->printf_P(PSTR("Relay off\n")); relay.off(); delay(3000); if(cliSerial->available() > 0){ return (0); } } } static int8_t test_wp(uint8_t argc, const Menu::arg *argv) { delay(1000); cliSerial->printf_P(PSTR("%u waypoints\n"), (unsigned)g.command_total); cliSerial->printf_P(PSTR("Hit radius: %f\n"), g.waypoint_radius); for(uint8_t i = 0; i <= g.command_total; i++){ struct Location temp = get_cmd_with_index(i); test_wp_print(&temp, i); } return (0); } static void test_wp_print(const struct Location *cmd, uint8_t wp_index) { cliSerial->printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"), (int)wp_index, (int)cmd->id, (int)cmd->options, (int)cmd->p1, cmd->alt, cmd->lat, cmd->lng); } static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); cliSerial->printf_P(PSTR("Control CH ")); cliSerial->println(MODE_CHANNEL, DEC); while(1){ delay(20); uint8_t switchPosition = readSwitch(); if (oldSwitchPosition != switchPosition){ cliSerial->printf_P(PSTR("Position %d\n"), switchPosition); oldSwitchPosition = switchPosition; } if(cliSerial->available() > 0){ return (0); } } } /* test the dataflash is working */ static int8_t test_logging(uint8_t argc, const Menu::arg *argv) { cliSerial->println_P(PSTR("Testing dataflash logging")); DataFlash.ShowDeviceInfo(cliSerial); return 0; } //------------------------------------------------------------------------------------------- // tests in this section are for real sensors or sensors that have been simulated static int8_t test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(100); // Blink GPS LED if we don't have a fix // ------------------------------------ update_GPS_light(); g_gps->update(); if (g_gps->new_data){ cliSerial->printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"), g_gps->latitude, g_gps->longitude, g_gps->altitude/100, g_gps->num_sats); }else{ cliSerial->printf_P(PSTR(".")); } if(cliSerial->available() > 0){ return (0); } } } static int8_t test_ins(uint8_t argc, const Menu::arg *argv) { //cliSerial->printf_P(PSTR("Calibrating.")); ahrs.init(); ahrs.set_fly_forward(true); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, flash_leds); ahrs.reset(); print_hit_enter(); delay(1000); uint8_t medium_loopCounter = 0; while(1){ delay(20); if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator fast_loopTimer = millis(); // INS // --- ahrs.update(); if(g.compass_enabled) { medium_loopCounter++; if(medium_loopCounter >= 5){ compass.read(); medium_loopCounter = 0; } } // We are using the IMU // --------------------- Vector3f gyros = ins.get_gyro(); Vector3f accels = ins.get_accel(); cliSerial->printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"), (int)ahrs.roll_sensor / 100, (int)ahrs.pitch_sensor / 100, (uint16_t)ahrs.yaw_sensor / 100, gyros.x, gyros.y, gyros.z, accels.x, accels.y, accels.z); } if(cliSerial->available() > 0){ return (0); } } } static int8_t test_mag(uint8_t argc, const Menu::arg *argv) { if (!g.compass_enabled) { cliSerial->printf_P(PSTR("Compass: ")); print_enabled(false); return (0); } if (!compass.init()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); return 0; } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_compass(&compass); report_compass(); // we need the AHRS initialised for this test ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, flash_leds); ahrs.reset(); int counter = 0; float heading = 0; print_hit_enter(); uint8_t medium_loopCounter = 0; while(1) { delay(20); if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator fast_loopTimer = millis(); // IMU // --- ahrs.update(); medium_loopCounter++; if(medium_loopCounter >= 5){ if (compass.read()) { // Calculate heading Matrix3f m = ahrs.get_dcm_matrix(); heading = compass.calculate_heading(m); compass.null_offsets(); } medium_loopCounter = 0; } counter++; if (counter>20) { if (compass.healthy) { Vector3f maggy = compass.get_offsets(); cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), (wrap_360_cd(ToDeg(heading) * 100)) /100, (int)compass.mag_x, (int)compass.mag_y, (int)compass.mag_z, maggy.x, maggy.y, maggy.z); } else { cliSerial->println_P(PSTR("compass not healthy")); } counter=0; } } if (cliSerial->available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. cliSerial->println_P(PSTR("saving offsets")); compass.save_offsets(); return (0); } //------------------------------------------------------------------------------------------- // real sensors that have not been simulated yet go here static int8_t test_sonar(uint8_t argc, const Menu::arg *argv) { if (!sonar.enabled()) { cliSerial->println_P(PSTR("WARNING: Sonar is not enabled")); } print_hit_enter(); init_sonar(); float sonar_dist_cm_min = 0.0f; float sonar_dist_cm_max = 0.0f; float voltage_min=0.0f, voltage_max = 0.0f; float sonar2_dist_cm_min = 0.0f; float sonar2_dist_cm_max = 0.0f; float voltage2_min=0.0f, voltage2_max = 0.0f; uint32_t last_print = 0; while (true) { delay(20); uint32_t now = millis(); float dist_cm = sonar.distance_cm(); float voltage = sonar.voltage(); if (sonar_dist_cm_min == 0.0f) { sonar_dist_cm_min = dist_cm; voltage_min = voltage; } sonar_dist_cm_max = max(sonar_dist_cm_max, dist_cm); sonar_dist_cm_min = min(sonar_dist_cm_min, dist_cm); voltage_min = min(voltage_min, voltage); voltage_max = max(voltage_max, voltage); dist_cm = sonar2.distance_cm(); voltage = sonar2.voltage(); if (sonar2_dist_cm_min == 0.0f) { sonar2_dist_cm_min = dist_cm; voltage2_min = voltage; } sonar2_dist_cm_max = max(sonar2_dist_cm_max, dist_cm); sonar2_dist_cm_min = min(sonar2_dist_cm_min, dist_cm); voltage2_min = min(voltage2_min, voltage); voltage2_max = max(voltage2_max, voltage); if (now - last_print >= 200) { cliSerial->printf_P(PSTR("sonar1 dist=%.1f:%.1fcm volt1=%.2f:%.2f sonar2 dist=%.1f:%.1fcm volt2=%.2f:%.2f\n"), sonar_dist_cm_min, sonar_dist_cm_max, voltage_min, voltage_max, sonar2_dist_cm_min, sonar2_dist_cm_max, voltage2_min, voltage2_max); voltage_min = voltage_max = 0.0f; voltage2_min = voltage2_max = 0.0f; sonar_dist_cm_min = sonar_dist_cm_max = 0.0f; sonar2_dist_cm_min = sonar2_dist_cm_max = 0.0f; last_print = now; } if (cliSerial->available() > 0) { break; } } return (0); } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 /* * run a debug shell */ static int8_t test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif #endif // CLI_ENABLED