/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include #include #include #include #include #include "GPS_detect_state.h" #include /** maximum number of GPS instances available on this platform. If more than 1 then redundant sensors may be available */ #define GPS_MAX_RECEIVERS 2 // maximum number of physical GPS sensors allowed - does not include virtual GPS created by blending receiver data #define GPS_MAX_INSTANCES (GPS_MAX_RECEIVERS + 1) // maximumum number of GPs instances including the 'virtual' GPS created by blending receiver data #define GPS_BLENDED_INSTANCE GPS_MAX_RECEIVERS // the virtual blended GPS is always the highest instance (2) #define GPS_RTK_INJECT_TO_ALL 127 #define GPS_MAX_RATE_MS 200 // maximum value of rate_ms (i.e. slowest update rate) is 5hz or 200ms // the number of GPS leap seconds #define GPS_LEAPSECONDS_MILLIS 18000ULL #define UNIX_OFFSET_MSEC (17000ULL * 86400ULL + 52ULL * 10ULL * MSEC_PER_WEEK - GPS_LEAPSECONDS_MILLIS) class DataFlash_Class; class AP_GPS_Backend; /// @class AP_GPS /// GPS driver main class class AP_GPS { public: friend class AP_GPS_ERB; friend class AP_GPS_GSOF; friend class AP_GPS_MAV; friend class AP_GPS_MTK; friend class AP_GPS_MTK19; friend class AP_GPS_NMEA; friend class AP_GPS_NOVA; friend class AP_GPS_PX4; friend class AP_GPS_QURT; friend class AP_GPS_SBF; friend class AP_GPS_SBP; friend class AP_GPS_SBP2; friend class AP_GPS_SIRF; friend class AP_GPS_UBLOX; friend class AP_GPS_Backend; // constructor AP_GPS(); // GPS driver types enum GPS_Type { GPS_TYPE_NONE = 0, GPS_TYPE_AUTO = 1, GPS_TYPE_UBLOX = 2, GPS_TYPE_MTK = 3, GPS_TYPE_MTK19 = 4, GPS_TYPE_NMEA = 5, GPS_TYPE_SIRF = 6, GPS_TYPE_HIL = 7, GPS_TYPE_SBP = 8, GPS_TYPE_UAVCAN = 9, GPS_TYPE_SBF = 10, GPS_TYPE_GSOF = 11, GPS_TYPE_QURT = 12, GPS_TYPE_ERB = 13, GPS_TYPE_MAV = 14, GPS_TYPE_NOVA = 15 }; /// GPS status codes enum GPS_Status { NO_GPS = GPS_FIX_TYPE_NO_GPS, ///< No GPS connected/detected NO_FIX = GPS_FIX_TYPE_NO_FIX, ///< Receiving valid GPS messages but no lock GPS_OK_FIX_2D = GPS_FIX_TYPE_2D_FIX, ///< Receiving valid messages and 2D lock GPS_OK_FIX_3D = GPS_FIX_TYPE_3D_FIX, ///< Receiving valid messages and 3D lock GPS_OK_FIX_3D_DGPS = GPS_FIX_TYPE_DGPS, ///< Receiving valid messages and 3D lock with differential improvements GPS_OK_FIX_3D_RTK_FLOAT = GPS_FIX_TYPE_RTK_FLOAT, ///< Receiving valid messages and 3D RTK Float GPS_OK_FIX_3D_RTK_FIXED = GPS_FIX_TYPE_RTK_FIXED, ///< Receiving valid messages and 3D RTK Fixed }; // GPS navigation engine settings. Not all GPS receivers support // this enum GPS_Engine_Setting { GPS_ENGINE_NONE = -1, GPS_ENGINE_PORTABLE = 0, GPS_ENGINE_STATIONARY = 2, GPS_ENGINE_PEDESTRIAN = 3, GPS_ENGINE_AUTOMOTIVE = 4, GPS_ENGINE_SEA = 5, GPS_ENGINE_AIRBORNE_1G = 6, GPS_ENGINE_AIRBORNE_2G = 7, GPS_ENGINE_AIRBORNE_4G = 8 }; enum GPS_Config { GPS_ALL_CONFIGURED = 255 }; /* The GPS_State structure is filled in by the backend driver as it parses each message from the GPS. */ struct GPS_State { uint8_t instance; // the instance number of this GPS // all the following fields must all be filled by the backend driver GPS_Status status; ///< driver fix status uint32_t time_week_ms; ///< GPS time (milliseconds from start of GPS week) uint16_t time_week; ///< GPS week number Location location; ///< last fix location float ground_speed; ///< ground speed in m/sec float ground_course; ///< ground course in degrees uint16_t hdop; ///< horizontal dilution of precision in cm uint16_t vdop; ///< vertical dilution of precision in cm uint8_t num_sats; ///< Number of visible satellites Vector3f velocity; ///< 3D velocitiy in m/s, in NED format float speed_accuracy; ///< 3D velocity accuracy estimate in m/s float horizontal_accuracy; ///< horizontal accuracy estimate in m float vertical_accuracy; ///< vertical accuracy estimate in m bool have_vertical_velocity:1; ///< does GPS give vertical velocity? Set to true only once available. bool have_speed_accuracy:1; ///< does GPS give speed accuracy? Set to true only once available. bool have_horizontal_accuracy:1; ///< does GPS give horizontal position accuracy? Set to true only once available. bool have_vertical_accuracy:1; ///< does GPS give vertical position accuract? Set to true only once available. uint32_t last_gps_time_ms; ///< the system time we got the last GPS timestamp, milliseconds }; /// Startup initialisation. void init(DataFlash_Class *dataflash, const AP_SerialManager& serial_manager); /// Update GPS state based on possible bytes received from the module. /// This routine must be called periodically (typically at 10Hz or /// more) to process incoming data. void update(void); // Pass mavlink data to message handlers (for MAV type) void handle_msg(const mavlink_message_t *msg); // Accessor functions // return number of active GPS sensors. Note that if the first GPS // is not present but the 2nd is then we return 2. Note that a blended // GPS solution is treated as an additional sensor. uint8_t num_sensors(void) const; // Return the index of the primary sensor which is the index of the sensor contributing to // the output. A blended solution is available as an additional instance uint8_t primary_sensor(void) const { return primary_instance; } /// Query GPS status GPS_Status status(uint8_t instance) const { return state[instance].status; } GPS_Status status(void) const { return status(primary_instance); } // Query the highest status this GPS supports (always reports GPS_OK_FIX_3D for the blended GPS) GPS_Status highest_supported_status(uint8_t instance) const; // location of last fix const Location &location(uint8_t instance) const { return state[instance].location; } const Location &location() const { return location(primary_instance); } // report speed accuracy bool speed_accuracy(uint8_t instance, float &sacc) const; bool speed_accuracy(float &sacc) const { return speed_accuracy(primary_instance, sacc); } bool horizontal_accuracy(uint8_t instance, float &hacc) const; bool horizontal_accuracy(float &hacc) const { return horizontal_accuracy(primary_instance, hacc); } bool vertical_accuracy(uint8_t instance, float &vacc) const; bool vertical_accuracy(float &vacc) const { return vertical_accuracy(primary_instance, vacc); } // 3D velocity in NED format const Vector3f &velocity(uint8_t instance) const { return state[instance].velocity; } const Vector3f &velocity() const { return velocity(primary_instance); } // ground speed in m/s float ground_speed(uint8_t instance) const { return state[instance].ground_speed; } float ground_speed() const { return ground_speed(primary_instance); } // ground speed in cm/s uint32_t ground_speed_cm(void) { return ground_speed() * 100; } // ground course in degrees float ground_course(uint8_t instance) const { return state[instance].ground_course; } float ground_course() const { return ground_course(primary_instance); } // ground course in centi-degrees int32_t ground_course_cd(uint8_t instance) const { return ground_course(instance) * 100; } int32_t ground_course_cd() const { return ground_course_cd(primary_instance); } // number of locked satellites uint8_t num_sats(uint8_t instance) const { return state[instance].num_sats; } uint8_t num_sats() const { return num_sats(primary_instance); } // GPS time of week in milliseconds uint32_t time_week_ms(uint8_t instance) const { return state[instance].time_week_ms; } uint32_t time_week_ms() const { return time_week_ms(primary_instance); } // GPS week uint16_t time_week(uint8_t instance) const { return state[instance].time_week; } uint16_t time_week() const { return time_week(primary_instance); } // horizontal dilution of precision uint16_t get_hdop(uint8_t instance) const { return state[instance].hdop; } uint16_t get_hdop() const { return get_hdop(primary_instance); } // vertical dilution of precision uint16_t get_vdop(uint8_t instance) const { return state[instance].vdop; } uint16_t get_vdop() const { return get_vdop(primary_instance); } // the time we got our last fix in system milliseconds. This is // used when calculating how far we might have moved since that fix uint32_t last_fix_time_ms(uint8_t instance) const { return timing[instance].last_fix_time_ms; } uint32_t last_fix_time_ms(void) const { return last_fix_time_ms(primary_instance); } // the time we last processed a message in milliseconds. This is // used to indicate that we have new GPS data to process uint32_t last_message_time_ms(uint8_t instance) const { return timing[instance].last_message_time_ms; } uint32_t last_message_time_ms(void) const { return last_message_time_ms(primary_instance); } // return true if the GPS supports vertical velocity values bool have_vertical_velocity(uint8_t instance) const { return state[instance].have_vertical_velocity; } bool have_vertical_velocity(void) const { return have_vertical_velocity(primary_instance); } // the expected lag (in seconds) in the position and velocity readings from the gps float get_lag(uint8_t instance) const; float get_lag(void) const { return get_lag(primary_instance); } // return a 3D vector defining the offset of the GPS antenna in meters relative to the body frame origin const Vector3f &get_antenna_offset(uint8_t instance) const; // set position for HIL void setHIL(uint8_t instance, GPS_Status status, uint64_t time_epoch_ms, const Location &location, const Vector3f &velocity, uint8_t num_sats, uint16_t hdop); // set accuracy for HIL void setHIL_Accuracy(uint8_t instance, float vdop, float hacc, float vacc, float sacc, bool _have_vertical_velocity, uint32_t sample_ms); // lock out a GPS port, allowing another application to use the port void lock_port(uint8_t instance, bool locked); //Inject a packet of raw binary to a GPS void inject_data(uint8_t *data, uint8_t len); void inject_data(uint8_t instance, uint8_t *data, uint8_t len); //MAVLink Status Sending void send_mavlink_gps_raw(mavlink_channel_t chan); void send_mavlink_gps2_raw(mavlink_channel_t chan); void send_mavlink_gps_rtk(mavlink_channel_t chan); void send_mavlink_gps2_rtk(mavlink_channel_t chan); // Returns the index of the first unconfigured GPS (returns GPS_ALL_CONFIGURED if all instances report as being configured) uint8_t first_unconfigured_gps(void) const; void broadcast_first_configuration_failure_reason(void) const; // return true if all GPS instances have finished configuration bool all_configured(void) const { return first_unconfigured_gps() == GPS_ALL_CONFIGURED; } // pre-arm check that all GPSs are close to each other. farthest distance between GPSs (in meters) is returned bool all_consistent(float &distance) const; // pre-arm check of GPS blending. False if blending is unhealthy, True if healthy or blending is not being used bool blend_health_check() const; // handle sending of initialisation strings to the GPS - only used by backends void send_blob_start(uint8_t instance, const char *_blob, uint16_t size); void send_blob_update(uint8_t instance); // return last fix time since the 1/1/1970 in microseconds uint64_t time_epoch_usec(uint8_t instance); uint64_t time_epoch_usec(void) { return time_epoch_usec(primary_instance); } // convert GPS week and millis to unix epoch in ms static uint64_t time_epoch_convert(uint16_t gps_week, uint32_t gps_ms); static const struct AP_Param::GroupInfo var_info[]; void Write_DataFlash_Log_Startup_messages(); protected: // dataflash for logging, if available DataFlash_Class *_DataFlash; // configuration parameters AP_Int8 _type[GPS_MAX_RECEIVERS]; AP_Int8 _navfilter; AP_Int8 _auto_switch; AP_Int8 _min_dgps; AP_Int16 _sbp_logmask; AP_Int8 _inject_to; uint32_t _last_instance_swap_ms; AP_Int8 _sbas_mode; AP_Int8 _min_elevation; AP_Int8 _raw_data; AP_Int8 _gnss_mode[GPS_MAX_RECEIVERS]; AP_Int16 _rate_ms[GPS_MAX_RECEIVERS]; // this parameter should always be accessed using get_rate_ms() AP_Int8 _save_config; AP_Int8 _auto_config; AP_Vector3f _antenna_offset[GPS_MAX_RECEIVERS]; AP_Int16 _delay_ms[GPS_MAX_RECEIVERS]; AP_Int8 _blend_mask; AP_Float _blend_tc; private: // return gps update rate in milliseconds uint16_t get_rate_ms(uint8_t instance) const; struct GPS_timing { // the time we got our last fix in system milliseconds uint32_t last_fix_time_ms; // the time we got our last fix in system milliseconds uint32_t last_message_time_ms; }; // Note allowance for an additional instance to contain blended data GPS_timing timing[GPS_MAX_RECEIVERS+1]; GPS_State state[GPS_MAX_RECEIVERS+1]; AP_GPS_Backend *drivers[GPS_MAX_RECEIVERS]; AP_HAL::UARTDriver *_port[GPS_MAX_RECEIVERS]; /// primary GPS instance uint8_t primary_instance:2; /// number of GPS instances present uint8_t num_instances:2; // which ports are locked uint8_t locked_ports:2; // state of auto-detection process, per instance struct detect_state { uint32_t detect_started_ms; uint32_t last_baud_change_ms; uint8_t current_baud; struct UBLOX_detect_state ublox_detect_state; struct MTK_detect_state mtk_detect_state; struct MTK19_detect_state mtk19_detect_state; struct SIRF_detect_state sirf_detect_state; struct NMEA_detect_state nmea_detect_state; struct SBP_detect_state sbp_detect_state; struct SBP2_detect_state sbp2_detect_state; struct ERB_detect_state erb_detect_state; } detect_state[GPS_MAX_RECEIVERS]; struct { const char *blob; uint16_t remaining; } initblob_state[GPS_MAX_RECEIVERS]; static const uint32_t _baudrates[]; static const char _initialisation_blob[]; static const char _initialisation_raw_blob[]; void detect_instance(uint8_t instance); void update_instance(uint8_t instance); /* buffer for re-assembling RTCM data for GPS injection. The 8 bit flags field in GPS_RTCM_DATA is interpreted as: 1 bit for "is fragmented" 2 bits for fragment number 5 bits for sequence number The rtcm_buffer is allocated on first use. Once a block of data is successfully reassembled it is injected into all active GPS backends. This assumes we don't want more than 4*180=720 bytes in a RTCM data block */ struct rtcm_buffer { uint8_t fragments_received:4; uint8_t sequence:5; uint8_t fragment_count; uint16_t total_length; uint8_t buffer[MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN*4]; } *rtcm_buffer; // re-assemble GPS_RTCM_DATA message void handle_gps_rtcm_data(const mavlink_message_t *msg); // inject data into all backends void inject_data_all(const uint8_t *data, uint16_t len); // GPS blending and switching Vector2f _NE_pos_offset_m[GPS_MAX_RECEIVERS]; // Filtered North,East position offset from GPS instance to blended solution in _output_state.location (m) float _hgt_offset_cm[GPS_MAX_RECEIVERS]; // Filtered height offset from GPS instance relative to blended solution in _output_state.location (cm) Vector3f _blended_antenna_offset; // blended antenna offset float _blended_lag_sec = 0.001f * GPS_MAX_RATE_MS; // blended receiver lag in seconds float _blend_weights[GPS_MAX_RECEIVERS]; // blend weight for each GPS. The blend weights must sum to 1.0 across all instances. uint32_t _last_time_updated[GPS_MAX_RECEIVERS]; // the last value of state.last_gps_time_ms read for that GPS instance - used to detect new data. float _omega_lpf; // cutoff frequency in rad/sec of LPF applied to position offsets bool _output_is_blended; // true when a blended GPS solution being output uint8_t _blend_health_counter; // 0 = perfectly health, 100 = very unhealthy // calculate the blend weight. Returns true if blend could be calculated, false if not bool calc_blend_weights(void); // calculate the blended state void calc_blended_state(void); };