/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * APM_Baro.cpp - barometer driver * */ #include "AP_Baro.h" #include #include #include #include #include #include #include "AP_Baro_BMP085.h" #include "AP_Baro_BMP280.h" #include "AP_Baro_HIL.h" #include "AP_Baro_MS5611.h" #include "AP_Baro_qflight.h" #include "AP_Baro_QURT.h" #if HAL_WITH_UAVCAN #include "AP_Baro_UAVCAN.h" #endif #define C_TO_KELVIN 273.15f // Gas Constant is from Aerodynamics for Engineering Students, Third Edition, E.L.Houghton and N.B.Carruthers #define ISA_GAS_CONSTANT 287.26f #define ISA_LAPSE_RATE 0.0065f #define INTERNAL_TEMPERATURE_CLAMP 35.0f extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AP_Baro::var_info[] = { // NOTE: Index numbers 0 and 1 were for the old integer // ground temperature and pressure // @Param: ABS_PRESS // @DisplayName: Absolute Pressure // @Description: calibrated ground pressure in Pascals // @Units: pascals // @Increment: 1 // @ReadOnly: True // @Volatile: True // @User: Advanced AP_GROUPINFO("ABS_PRESS", 2, AP_Baro, sensors[0].ground_pressure, 0), // @Param: TEMP // @DisplayName: ground temperature // @Description: calibrated ground temperature in degrees Celsius // @Units: degrees celsius // @Increment: 1 // @ReadOnly: True // @Volatile: True // @User: Advanced AP_GROUPINFO("TEMP", 3, AP_Baro, _user_ground_temperature, 0), // index 4 reserved for old AP_Int8 version in legacy FRAM //AP_GROUPINFO("ALT_OFFSET", 4, AP_Baro, _alt_offset, 0), // @Param: ALT_OFFSET // @DisplayName: altitude offset // @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed. // @Units: meters // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("ALT_OFFSET", 5, AP_Baro, _alt_offset, 0), // @Param: PRIMARY // @DisplayName: Primary barometer // @Description: This selects which barometer will be the primary if multiple barometers are found // @Values: 0:FirstBaro,1:2ndBaro,2:3rdBaro // @User: Advanced AP_GROUPINFO("PRIMARY", 6, AP_Baro, _primary_baro, 0), // @Param: EXT_BUS // @DisplayName: External baro bus // @Description: This selects the bus number for looking for an I2C barometer // @Values: -1:Disabled,0:Bus0,1:Bus1 // @User: Advanced AP_GROUPINFO("EXT_BUS", 7, AP_Baro, _ext_bus, -1), // @Param: SPEC_GRAV // @DisplayName: Specific Gravity (For water depth measurement) // @Description: This sets the specific gravity of the fluid when flying an underwater ROV. // @Values: 1.0:Freshwater,1.024:Saltwater AP_GROUPINFO_FRAME("SPEC_GRAV", 8, AP_Baro, _specific_gravity, 1.0, AP_PARAM_FRAME_SUB), #if BARO_MAX_INSTANCES > 1 // @Param: ABS_PRESS2 // @DisplayName: Absolute Pressure // @Description: calibrated ground pressure in Pascals // @Units: pascals // @Increment: 1 // @ReadOnly: True // @Volatile: True // @User: Advanced AP_GROUPINFO("ABS_PRESS2", 9, AP_Baro, sensors[1].ground_pressure, 0), // Slot 10 used to be TEMP2 #endif #if BARO_MAX_INSTANCES > 2 // @Param: ABS_PRESS3 // @DisplayName: Absolute Pressure // @Description: calibrated ground pressure in Pascals // @Units: pascals // @Increment: 1 // @ReadOnly: True // @Volatile: True // @User: Advanced AP_GROUPINFO("ABS_PRESS3", 11, AP_Baro, sensors[2].ground_pressure, 0), // Slot 12 used to be TEMP3 #endif AP_GROUPEND }; /* AP_Baro constructor */ AP_Baro::AP_Baro() { AP_Param::setup_object_defaults(this, var_info); } // calibrate the barometer. This must be called at least once before // the altitude() or climb_rate() interfaces can be used void AP_Baro::calibrate(bool save) { // reset the altitude offset when we calibrate. The altitude // offset is supposed to be for within a flight _alt_offset.set_and_save(0); // start by assuming all sensors are calibrated (for healthy() test) for (uint8_t i=0; i<_num_sensors; i++) { sensors[i].calibrated = true; sensors[i].alt_ok = true; } // let the barometer settle for a full second after startup // the MS5611 reads quite a long way off for the first second, // leading to about 1m of error if we don't wait for (uint8_t i = 0; i < 10; i++) { uint32_t tstart = AP_HAL::millis(); do { update(); if (AP_HAL::millis() - tstart > 500) { AP_HAL::panic("PANIC: AP_Baro::read unsuccessful " "for more than 500ms in AP_Baro::calibrate [2]\r\n"); } hal.scheduler->delay(10); } while (!healthy()); hal.scheduler->delay(100); } // now average over 5 values for the ground pressure and // temperature settings float sum_pressure[BARO_MAX_INSTANCES] = {0}; float sum_temperature[BARO_MAX_INSTANCES] = {0}; uint8_t count[BARO_MAX_INSTANCES] = {0}; const uint8_t num_samples = 5; for (uint8_t c = 0; c < num_samples; c++) { uint32_t tstart = AP_HAL::millis(); do { update(); if (AP_HAL::millis() - tstart > 500) { AP_HAL::panic("PANIC: AP_Baro::read unsuccessful " "for more than 500ms in AP_Baro::calibrate [3]\r\n"); } } while (!healthy()); for (uint8_t i=0; i<_num_sensors; i++) { if (healthy(i)) { sum_pressure[i] += sensors[i].pressure; sum_temperature[i] += sensors[i].temperature; count[i] += 1; } } hal.scheduler->delay(100); } for (uint8_t i=0; i<_num_sensors; i++) { if (count[i] == 0) { sensors[i].calibrated = false; } else { if (save) { sensors[i].ground_pressure.set_and_save(sum_pressure[i] / count[i]); } } } _guessed_ground_temperature = get_external_temperature(); // panic if all sensors are not calibrated for (uint8_t i=0; i<_num_sensors; i++) { if (sensors[i].calibrated) { return; } } AP_HAL::panic("AP_Baro: all sensors uncalibrated"); } /* update the barometer calibration this updates the baro ground calibration to the current values. It can be used before arming to keep the baro well calibrated */ void AP_Baro::update_calibration() { for (uint8_t i=0; i<_num_sensors; i++) { if (healthy(i)) { sensors[i].ground_pressure.set(get_pressure(i)); } // don't notify the GCS too rapidly or we flood the link uint32_t now = AP_HAL::millis(); if (now - _last_notify_ms > 10000) { sensors[i].ground_pressure.notify(); _last_notify_ms = now; } } // always update the guessed ground temp _guessed_ground_temperature = get_external_temperature(); // force EAS2TAS to recalculate _EAS2TAS = 0; } // return altitude difference in meters between current pressure and a // given base_pressure in Pascal float AP_Baro::get_altitude_difference(float base_pressure, float pressure) const { float ret; float temp = get_ground_temperature() + C_TO_KELVIN; float scaling = pressure / base_pressure; // This is an exact calculation that is within +-2.5m of the standard // atmosphere tables in the troposphere (up to 11,000 m amsl). ret = 153.8462f * temp * (1.0f - expf(0.190259f * logf(scaling))); return ret; } // return current scale factor that converts from equivalent to true airspeed // valid for altitudes up to 10km AMSL // assumes standard atmosphere lapse rate float AP_Baro::get_EAS2TAS(void) { float altitude = get_altitude(); if ((fabsf(altitude - _last_altitude_EAS2TAS) < 25.0f) && !is_zero(_EAS2TAS)) { // not enough change to require re-calculating return _EAS2TAS; } // only estimate lapse rate for the difference from the ground location // provides a more consistent reading then trying to estimate a complete // ISA model atmosphere float tempK = get_ground_temperature() + C_TO_KELVIN - ISA_LAPSE_RATE * altitude; _EAS2TAS = safe_sqrt(1.225f / ((float)get_pressure() / (ISA_GAS_CONSTANT * tempK))); _last_altitude_EAS2TAS = altitude; return _EAS2TAS; } // return air density / sea level density - decreases as altitude climbs float AP_Baro::get_air_density_ratio(void) { const float eas2tas = get_EAS2TAS(); if (eas2tas > 0.0f) { return 1.0f/(sq(eas2tas)); } else { return 1.0f; } } // return current climb_rate estimate relative to time that calibrate() // was called. Returns climb rate in meters/s, positive means up // note that this relies on read() being called regularly to get new data float AP_Baro::get_climb_rate(void) { if (_hil.have_alt) { return _hil.climb_rate; } // we use a 7 point derivative filter on the climb rate. This seems // to produce somewhat reasonable results on real hardware return _climb_rate_filter.slope() * 1.0e3f; } // returns the ground temperature in degrees C, selecting either a user // provided one, or the internal estimate float AP_Baro::get_ground_temperature(void) const { if (is_zero(_user_ground_temperature)) { return _guessed_ground_temperature; } else { return _user_ground_temperature; } } /* set external temperature to be used for calibration (degrees C) */ void AP_Baro::set_external_temperature(float temperature) { _external_temperature = temperature; _last_external_temperature_ms = AP_HAL::millis(); } /* get the temperature in degrees C to be used for calibration purposes */ float AP_Baro::get_external_temperature(const uint8_t instance) const { // if we have a recent external temperature then use it if (_last_external_temperature_ms != 0 && AP_HAL::millis() - _last_external_temperature_ms < 10000) { return _external_temperature; } // if we don't have an external temperature then use the minimum // of the barometer temperature and 35 degrees C. The reason for // not just using the baro temperature is it tends to read high, // often 30 degrees above the actual temperature. That means the // EAS2TAS tends to be off by quite a large margin, as well as // the calculation of altitude difference betweeen two pressures // reporting a high temperature will cause the aircraft to // estimate itself as flying higher then it actually is. return MIN(get_temperature(instance), INTERNAL_TEMPERATURE_CLAMP); } bool AP_Baro::_add_backend(AP_Baro_Backend *backend) { if (!backend) { return false; } if (_num_drivers >= BARO_MAX_DRIVERS) { AP_HAL::panic("Too many barometer drivers"); } drivers[_num_drivers++] = backend; return true; } /* macro to add a backend with check for too many sensors We don't try to start more than the maximum allowed */ #define ADD_BACKEND(backend) \ do { _add_backend(backend); \ if (_num_drivers == BARO_MAX_DRIVERS || \ _num_sensors == BARO_MAX_INSTANCES) { \ return; \ } \ } while (0) /* initialise the barometer object, loading backend drivers */ void AP_Baro::init(void) { // ensure that there isn't a previous ground temperature saved if (!is_zero(_user_ground_temperature)) { _user_ground_temperature.set_and_save(0.0f); _user_ground_temperature.notify(); } if (_hil_mode) { drivers[0] = new AP_Baro_HIL(*this); _num_drivers = 1; return; } #if HAL_BARO_DEFAULT == HAL_BARO_PX4 || HAL_BARO_DEFAULT == HAL_BARO_VRBRAIN switch (AP_BoardConfig::get_board_type()) { case AP_BoardConfig::PX4_BOARD_PX4V1: #ifdef HAL_BARO_MS5611_I2C_BUS ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.i2c_mgr->get_device(HAL_BARO_MS5611_I2C_BUS, HAL_BARO_MS5611_I2C_ADDR)))); #endif break; case AP_BoardConfig::PX4_BOARD_PIXHAWK: case AP_BoardConfig::PX4_BOARD_PHMINI: case AP_BoardConfig::PX4_BOARD_AUAV21: case AP_BoardConfig::PX4_BOARD_PH2SLIM: ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.spi->get_device(HAL_BARO_MS5611_NAME)))); break; case AP_BoardConfig::PX4_BOARD_PIXHAWK2: ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.spi->get_device(HAL_BARO_MS5611_SPI_EXT_NAME)))); ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.spi->get_device(HAL_BARO_MS5611_NAME)))); break; case AP_BoardConfig::PX4_BOARD_PIXRACER: ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.spi->get_device(HAL_BARO_MS5611_SPI_INT_NAME)))); break; case AP_BoardConfig::PX4_BOARD_AEROFC: #ifdef HAL_BARO_MS5607_I2C_BUS ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.i2c_mgr->get_device(HAL_BARO_MS5607_I2C_BUS, HAL_BARO_MS5607_I2C_ADDR)), AP_Baro_MS56XX::BARO_MS5607)); #endif break; default: break; } #elif HAL_BARO_DEFAULT == HAL_BARO_HIL drivers[0] = new AP_Baro_HIL(*this); _num_drivers = 1; #elif HAL_BARO_DEFAULT == HAL_BARO_BMP085 drivers[0] = new AP_Baro_BMP085(*this, std::move(hal.i2c_mgr->get_device(HAL_BARO_BMP085_BUS, HAL_BARO_BMP085_I2C_ADDR))); _num_drivers = 1; #elif HAL_BARO_DEFAULT == HAL_BARO_BMP280_I2C ADD_BACKEND(AP_Baro_BMP280::probe(*this, std::move(hal.i2c_mgr->get_device(HAL_BARO_BMP280_BUS, HAL_BARO_BMP280_I2C_ADDR)))); #elif HAL_BARO_DEFAULT == HAL_BARO_BMP280_SPI ADD_BACKEND(AP_Baro_BMP280::probe(*this, std::move(hal.spi->get_device(HAL_BARO_BMP280_NAME)))); #elif HAL_BARO_DEFAULT == HAL_BARO_MS5611_I2C ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.i2c_mgr->get_device(HAL_BARO_MS5611_I2C_BUS, HAL_BARO_MS5611_I2C_ADDR)))); #elif HAL_BARO_DEFAULT == HAL_BARO_MS5611_SPI ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.spi->get_device(HAL_BARO_MS5611_NAME)))); #elif HAL_BARO_DEFAULT == HAL_BARO_MS5607_I2C ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.i2c_mgr->get_device(HAL_BARO_MS5607_I2C_BUS, HAL_BARO_MS5607_I2C_ADDR)), AP_Baro_MS56XX::BARO_MS5607)); #elif HAL_BARO_DEFAULT == HAL_BARO_MS5637_I2C ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.i2c_mgr->get_device(HAL_BARO_MS5637_I2C_BUS, HAL_BARO_MS5637_I2C_ADDR)), AP_Baro_MS56XX::BARO_MS5637)); #elif HAL_BARO_DEFAULT == HAL_BARO_QFLIGHT drivers[0] = new AP_Baro_QFLIGHT(*this); _num_drivers = 1; #elif HAL_BARO_DEFAULT == HAL_BARO_QURT drivers[0] = new AP_Baro_QURT(*this); _num_drivers = 1; #endif // can optionally have baro on I2C too if (_ext_bus >= 0) { #if APM_BUILD_TYPE(APM_BUILD_ArduSub) ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.i2c_mgr->get_device(_ext_bus, HAL_BARO_MS5837_I2C_ADDR)), AP_Baro_MS56XX::BARO_MS5837)); #else ADD_BACKEND(AP_Baro_MS56XX::probe(*this, std::move(hal.i2c_mgr->get_device(_ext_bus, HAL_BARO_MS5611_I2C_ADDR)))); #endif } #if HAL_WITH_UAVCAN // If there is place left - allocate one UAVCAN based baro if ((AP_BoardConfig::get_can_enable() != 0) && (hal.can_mgr != nullptr)) { if(_num_drivers < BARO_MAX_DRIVERS && _num_sensors < BARO_MAX_INSTANCES) { printf("Creating AP_Baro_UAVCAN\n\r"); drivers[_num_drivers] = new AP_Baro_UAVCAN(*this); _num_drivers++; } } #endif if (_num_drivers == 0 || _num_sensors == 0 || drivers[0] == nullptr) { AP_HAL::panic("Baro: unable to initialise driver"); } } /* call update on all drivers */ void AP_Baro::update(void) { if (fabsf(_alt_offset - _alt_offset_active) > 0.01f) { // If there's more than 1cm difference then slowly slew to it via LPF. // The EKF does not like step inputs so this keeps it happy. _alt_offset_active = (0.95f*_alt_offset_active) + (0.05f*_alt_offset); } else { _alt_offset_active = _alt_offset; } if (!_hil_mode) { for (uint8_t i=0; i<_num_drivers; i++) { drivers[i]->update(); } } // consider a sensor as healthy if it has had an update in the // last 0.5 seconds uint32_t now = AP_HAL::millis(); for (uint8_t i=0; i<_num_sensors; i++) { sensors[i].healthy = (now - sensors[i].last_update_ms < 500) && !is_zero(sensors[i].pressure); } for (uint8_t i=0; i<_num_sensors; i++) { if (sensors[i].healthy) { // update altitude calculation float ground_pressure = sensors[i].ground_pressure; if (is_zero(ground_pressure) || isnan(ground_pressure) || isinf(ground_pressure)) { sensors[i].ground_pressure = sensors[i].pressure; } float altitude = sensors[i].altitude; if (sensors[i].type == BARO_TYPE_AIR) { altitude = get_altitude_difference(sensors[i].ground_pressure, sensors[i].pressure); } else if (sensors[i].type == BARO_TYPE_WATER) { //101325Pa is sea level air pressure, 9800 Pascal/ m depth in water. //No temperature or depth compensation for density of water. altitude = (sensors[i].ground_pressure - sensors[i].pressure) / 9800.0f / _specific_gravity; } // sanity check altitude sensors[i].alt_ok = !(isnan(altitude) || isinf(altitude)); if (sensors[i].alt_ok) { sensors[i].altitude = altitude + _alt_offset_active; } } if (_hil.have_alt) { sensors[0].altitude = _hil.altitude; } if (_hil.have_last_update) { sensors[0].last_update_ms = _hil.last_update_ms; } } // ensure the climb rate filter is updated if (healthy()) { _climb_rate_filter.update(get_altitude(), get_last_update()); } // choose primary sensor if (_primary_baro >= 0 && _primary_baro < _num_sensors && healthy(_primary_baro)) { _primary = _primary_baro; } else { _primary = 0; for (uint8_t i=0; i<_num_sensors; i++) { if (healthy(i)) { _primary = i; break; } } } } /* call accumulate on all drivers */ void AP_Baro::accumulate(void) { for (uint8_t i=0; i<_num_drivers; i++) { drivers[i]->accumulate(); } } /* register a new sensor, claiming a sensor slot. If we are out of slots it will panic */ uint8_t AP_Baro::register_sensor(void) { if (_num_sensors >= BARO_MAX_INSTANCES) { AP_HAL::panic("Too many barometers"); } return _num_sensors++; } /* check if all barometers are healthy */ bool AP_Baro::all_healthy(void) const { for (uint8_t i=0; i<_num_sensors; i++) { if (!healthy(i)) { return false; } } return _num_sensors > 0; }