// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // NMEA parser, adapted by Michael Smith from TinyGPS v9: // // TinyGPS - a small GPS library for Arduino providing basic NMEA parsing // Copyright (C) 2008-9 Mikal Hart // All rights reserved. // /// @file AP_GPS_NMEA.cpp /// @brief NMEA protocol parser /// /// This is a lightweight NMEA parser, derived originally from the /// TinyGPS parser by Mikal Hart. /// #include #include #include #include #include #include "AP_GPS_NMEA.h" extern const AP_HAL::HAL& hal; // SiRF init messages ////////////////////////////////////////////////////////// // // Note that we will only see a SiRF in NMEA mode if we are explicitly configured // for NMEA. GPS_AUTO will try to set any SiRF unit to binary mode as part of // the autodetection process. // #define SIRF_INIT_MSG \ "$PSRF103,0,0,1,1*25\r\n" /* GGA @ 1Hz */ \ "$PSRF103,1,0,0,1*25\r\n" /* GLL off */ \ "$PSRF103,2,0,0,1*26\r\n" /* GSA off */ \ "$PSRF103,3,0,0,1*27\r\n" /* GSV off */ \ "$PSRF103,4,0,1,1*20\r\n" /* RMC off */ \ "$PSRF103,5,0,1,1*20\r\n" /* VTG @ 1Hz */ \ "$PSRF103,6,0,0,1*22\r\n" /* MSS off */ \ "$PSRF103,8,0,0,1*2C\r\n" /* ZDA off */ \ "$PSRF151,1*3F\r\n" /* WAAS on (not always supported) */ \ "$PSRF106,21*0F\r\n" /* datum = WGS84 */ // MediaTek init messages ////////////////////////////////////////////////////// // // Note that we may see a MediaTek in NMEA mode if we are connected to a non-DIYDrones // MediaTek-based GPS. // #define MTK_INIT_MSG \ "$PMTK314,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0*29\r\n" /* RMC, GGA & VTG once every fix */ \ "$PMTK330,0*2E\r\n" /* datum = WGS84 */ \ "$PMTK313,1*2E\r\n" /* SBAS on */ \ "$PMTK301,2*2E\r\n" /* use SBAS data for DGPS */ // ublox init messages ///////////////////////////////////////////////////////// // // Note that we will only see a ublox in NMEA mode if we are explicitly configured // for NMEA. GPS_AUTO will try to set any ublox unit to binary mode as part of // the autodetection process. // // We don't attempt to send $PUBX,41 as the unit must already be talking NMEA // and we don't know the baudrate. // #define UBLOX_INIT_MSG \ "$PUBX,40,gga,0,1,0,0,0,0*7B\r\n" /* GGA on at one per fix */ \ "$PUBX,40,vtg,0,1,0,0,0,0*7F\r\n" /* VTG on at one per fix */ \ "$PUBX,40,rmc,0,0,0,0,0,0*67\r\n" /* RMC off (XXX suppress other message types?) */ const prog_char AP_GPS_NMEA::_initialisation_blob[] PROGMEM = SIRF_INIT_MSG MTK_INIT_MSG UBLOX_INIT_MSG; // NMEA message identifiers //////////////////////////////////////////////////// // const char AP_GPS_NMEA::_gprmc_string[] PROGMEM = "GPRMC"; const char AP_GPS_NMEA::_gpgga_string[] PROGMEM = "GPGGA"; const char AP_GPS_NMEA::_gpvtg_string[] PROGMEM = "GPVTG"; // Convenience macros ////////////////////////////////////////////////////////// // #define DIGIT_TO_VAL(_x) (_x - '0') #define hexdigit(x) ((x)>9?'A'+(x):'0'+(x)) AP_GPS_NMEA::AP_GPS_NMEA(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _state, _port), _parity(0), _is_checksum_term(false), _sentence_type(0), _term_number(0), _term_offset(0), _gps_data_good(false) { gps.send_blob_start(state.instance, _initialisation_blob, sizeof(_initialisation_blob)); // this guarantees that _term is always nul terminated memset(_term, 0, sizeof(_term)); } bool AP_GPS_NMEA::read(void) { int16_t numc; bool parsed = false; numc = port->available(); while (numc--) { if (_decode(port->read())) { parsed = true; } } return parsed; } bool AP_GPS_NMEA::_decode(char c) { bool valid_sentence = false; switch (c) { case ',': // term terminators _parity ^= c; case '\r': case '\n': case '*': if (_term_offset < sizeof(_term)) { _term[_term_offset] = 0; valid_sentence = _term_complete(); } ++_term_number; _term_offset = 0; _is_checksum_term = c == '*'; return valid_sentence; case '$': // sentence begin _term_number = _term_offset = 0; _parity = 0; _sentence_type = _GPS_SENTENCE_OTHER; _is_checksum_term = false; _gps_data_good = false; return valid_sentence; } // ordinary characters if (_term_offset < sizeof(_term) - 1) _term[_term_offset++] = c; if (!_is_checksum_term) _parity ^= c; return valid_sentence; } // // internal utilities // int16_t AP_GPS_NMEA::_from_hex(char a) { if (a >= 'A' && a <= 'F') return a - 'A' + 10; else if (a >= 'a' && a <= 'f') return a - 'a' + 10; else return a - '0'; } uint32_t AP_GPS_NMEA::_parse_decimal_100() { char *p = _term; uint32_t ret = 100UL * atol(p); while (isdigit(*p)) ++p; if (*p == '.') { if (isdigit(p[1])) { ret += 10 * DIGIT_TO_VAL(p[1]); if (isdigit(p[2])) ret += DIGIT_TO_VAL(p[2]); } } return ret; } /* parse a NMEA latitude/longitude degree value. The result is in degrees*1e7 */ uint32_t AP_GPS_NMEA::_parse_degrees() { char *p, *q; uint8_t deg = 0, min = 0; float frac_min = 0; int32_t ret = 0; // scan for decimal point or end of field for (p = _term; *p && isdigit(*p); p++) ; q = _term; // convert degrees while ((p - q) > 2 && *q) { if (deg) deg *= 10; deg += DIGIT_TO_VAL(*q++); } // convert minutes while (p > q && *q) { if (min) min *= 10; min += DIGIT_TO_VAL(*q++); } // convert fractional minutes if (*p == '.') { q = p + 1; float frac_scale = 0.1f; while (*q && isdigit(*q)) { frac_min += DIGIT_TO_VAL(*q) * frac_scale; q++; frac_scale *= 0.1f; } } ret = (deg * (int32_t)10000000UL); ret += (min * (int32_t)10000000UL / 60); ret += (int32_t) (frac_min * (1.0e7f / 60.0f)); return ret; } /* see if we have a new set of NMEA messages */ bool AP_GPS_NMEA::_have_new_message() { if (_last_GPRMC_ms == 0 || _last_GPGGA_ms == 0) { return false; } uint32_t now = hal.scheduler->millis(); if (now - _last_GPRMC_ms > 150 || now - _last_GPGGA_ms > 150) { return false; } if (_last_GPVTG_ms != 0 && now - _last_GPVTG_ms > 150) { return false; } // prevent these messages being used again if (_last_GPVTG_ms != 0) { _last_GPVTG_ms = 1; } _last_GPGGA_ms = 1; _last_GPRMC_ms = 1; return true; } // Processes a just-completed term // Returns true if new sentence has just passed checksum test and is validated bool AP_GPS_NMEA::_term_complete() { // handle the last term in a message if (_is_checksum_term) { uint8_t checksum = 16 * _from_hex(_term[0]) + _from_hex(_term[1]); if (checksum == _parity) { if (_gps_data_good) { switch (_sentence_type) { case _GPS_SENTENCE_GPRMC: //time = _new_time; //date = _new_date; state.location.lat = _new_latitude; state.location.lng = _new_longitude; state.ground_speed = _new_speed*0.01f; state.ground_course_cd = _new_course; make_gps_time(_new_date, _new_time * 10); state.last_gps_time_ms = hal.scheduler->millis(); // To-Do: add support for proper reporting of 2D and 3D fix state.status = AP_GPS::GPS_OK_FIX_3D; fill_3d_velocity(); break; case _GPS_SENTENCE_GPGGA: state.location.alt = _new_altitude; state.location.lat = _new_latitude; state.location.lng = _new_longitude; state.num_sats = _new_satellite_count; state.hdop = _new_hdop; // To-Do: add support for proper reporting of 2D and 3D fix state.status = AP_GPS::GPS_OK_FIX_3D; break; case _GPS_SENTENCE_GPVTG: state.ground_speed = _new_speed*0.01f; state.ground_course_cd = _new_course; // VTG has no fix indicator, can't change fix status break; } } else { switch (_sentence_type) { case _GPS_SENTENCE_GPRMC: case _GPS_SENTENCE_GPGGA: // Only these sentences give us information about // fix status. state.status = AP_GPS::NO_FIX; } } // see if we got a good message return _have_new_message(); } // we got a bad message, ignore it return false; } // the first term determines the sentence type if (_term_number == 0) { if (!strcmp_P(_term, _gprmc_string)) { _sentence_type = _GPS_SENTENCE_GPRMC; _last_GPRMC_ms = hal.scheduler->millis(); } else if (!strcmp_P(_term, _gpgga_string)) { _sentence_type = _GPS_SENTENCE_GPGGA; _last_GPGGA_ms = hal.scheduler->millis(); } else if (!strcmp_P(_term, _gpvtg_string)) { _sentence_type = _GPS_SENTENCE_GPVTG; // VTG may not contain a data qualifier, presume the solution is good // unless it tells us otherwise. _last_GPVTG_ms = hal.scheduler->millis(); _gps_data_good = true; } else { _sentence_type = _GPS_SENTENCE_OTHER; } return false; } // 32 = RMC, 64 = GGA, 96 = VTG if (_sentence_type != _GPS_SENTENCE_OTHER && _term[0]) { switch (_sentence_type + _term_number) { // operational status // case _GPS_SENTENCE_GPRMC + 2: // validity (RMC) _gps_data_good = _term[0] == 'A'; break; case _GPS_SENTENCE_GPGGA + 6: // Fix data (GGA) _gps_data_good = _term[0] > '0'; break; case _GPS_SENTENCE_GPVTG + 9: // validity (VTG) (we may not see this field) _gps_data_good = _term[0] != 'N'; break; case _GPS_SENTENCE_GPGGA + 7: // satellite count (GGA) _new_satellite_count = atol(_term); break; case _GPS_SENTENCE_GPGGA + 8: // HDOP (GGA) _new_hdop = _parse_decimal_100(); break; // time and date // case _GPS_SENTENCE_GPRMC + 1: // Time (RMC) case _GPS_SENTENCE_GPGGA + 1: // Time (GGA) _new_time = _parse_decimal_100(); break; case _GPS_SENTENCE_GPRMC + 9: // Date (GPRMC) _new_date = atol(_term); break; // location // case _GPS_SENTENCE_GPRMC + 3: // Latitude case _GPS_SENTENCE_GPGGA + 2: _new_latitude = _parse_degrees(); break; case _GPS_SENTENCE_GPRMC + 4: // N/S case _GPS_SENTENCE_GPGGA + 3: if (_term[0] == 'S') _new_latitude = -_new_latitude; break; case _GPS_SENTENCE_GPRMC + 5: // Longitude case _GPS_SENTENCE_GPGGA + 4: _new_longitude = _parse_degrees(); break; case _GPS_SENTENCE_GPRMC + 6: // E/W case _GPS_SENTENCE_GPGGA + 5: if (_term[0] == 'W') _new_longitude = -_new_longitude; break; case _GPS_SENTENCE_GPGGA + 9: // Altitude (GPGGA) _new_altitude = _parse_decimal_100(); break; // course and speed // case _GPS_SENTENCE_GPRMC + 7: // Speed (GPRMC) case _GPS_SENTENCE_GPVTG + 5: // Speed (VTG) _new_speed = (_parse_decimal_100() * 514) / 1000; // knots-> m/sec, approximiates * 0.514 break; case _GPS_SENTENCE_GPRMC + 8: // Course (GPRMC) case _GPS_SENTENCE_GPVTG + 1: // Course (VTG) _new_course = _parse_decimal_100(); break; } } return false; } /* detect a NMEA GPS. Adds one byte, and returns true if the stream matches a NMEA string */ bool AP_GPS_NMEA::_detect(struct NMEA_detect_state &state, uint8_t data) { switch (state.step) { case 0: state.ck = 0; if ('$' == data) { state.step++; } break; case 1: if ('*' == data) { state.step++; } else { state.ck ^= data; } break; case 2: if (hexdigit(state.ck>>4) == data) { state.step++; } else { state.step = 0; } break; case 3: if (hexdigit(state.ck&0xF) == data) { return true; } state.step = 0; break; } return false; }