/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "AP_Proximity_config.h"
#if AP_PROXIMITY_RANGEFINDER_ENABLED
#include "AP_Proximity_RangeFinder.h"
#include
#include
#include
#include
#include
// update the state of the sensor
void AP_Proximity_RangeFinder::update(void)
{
// exit immediately if no rangefinder object
const RangeFinder *rngfnd = AP::rangefinder();
if (rngfnd == nullptr) {
set_status(AP_Proximity::Status::NoData);
return;
}
uint32_t now = AP_HAL::millis();
// look through all rangefinders
for (uint8_t i=0; i < rngfnd->num_sensors(); i++) {
AP_RangeFinder_Backend *sensor = rngfnd->get_backend(i);
if (sensor == nullptr) {
continue;
}
if (sensor->has_data()) {
// check for horizontal range finders
if (sensor->orientation() <= ROTATION_YAW_315) {
const uint8_t sector = (uint8_t)sensor->orientation();
const float angle = sector * 45;
const AP_Proximity_Boundary_3D::Face face = frontend.boundary.get_face(angle);
// distance in meters
const float distance = sensor->distance();
_distance_min = sensor->min_distance_cm() * 0.01f;
_distance_max = sensor->max_distance_cm() * 0.01f;
if ((distance <= _distance_max) && (distance >= _distance_min) && !ignore_reading(angle, distance, false)) {
frontend.boundary.set_face_attributes(face, angle, distance, state.instance);
// update OA database
database_push(angle, distance);
} else {
frontend.boundary.reset_face(face, state.instance);
}
_last_update_ms = now;
}
// check upward facing range finder
if (sensor->orientation() == ROTATION_PITCH_90) {
int16_t distance_upward = sensor->distance_cm();
int16_t up_distance_min = sensor->min_distance_cm();
int16_t up_distance_max = sensor->max_distance_cm();
if ((distance_upward >= up_distance_min) && (distance_upward <= up_distance_max)) {
_distance_upward = distance_upward * 0.01f;
} else {
_distance_upward = -1.0; // mark an valid reading
}
_last_upward_update_ms = now;
}
}
}
// check for timeout and set health status
if ((_last_update_ms == 0 || (now - _last_update_ms > PROXIMITY_RANGEFIDER_TIMEOUT_MS)) &&
(_last_upward_update_ms == 0 || (now - _last_upward_update_ms > PROXIMITY_RANGEFIDER_TIMEOUT_MS))) {
set_status(AP_Proximity::Status::NoData);
} else {
set_status(AP_Proximity::Status::Good);
}
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_RangeFinder::get_upward_distance(float &distance) const
{
if ((AP_HAL::millis() - _last_upward_update_ms <= PROXIMITY_RANGEFIDER_TIMEOUT_MS) &&
is_positive(_distance_upward)) {
distance = _distance_upward;
return true;
}
return false;
}
#endif // AP_PROXIMITY_RANGEFINDER_ENABLED