/*
Please contribute your ideas! See http://dev.ardupilot.org for details
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#define FLASHSTORAGE_DEBUG 0
#if FLASHSTORAGE_DEBUG
#define debug(fmt, args...) do { printf(fmt, ##args); } while(0)
#else
#define debug(fmt, args...) do { } while(0)
#endif
// constructor.
AP_FlashStorage::AP_FlashStorage(uint8_t *_mem_buffer,
uint32_t _flash_sector_size,
FlashWrite _flash_write,
FlashRead _flash_read,
FlashErase _flash_erase,
FlashEraseOK _flash_erase_ok) :
mem_buffer(_mem_buffer),
flash_sector_size(_flash_sector_size),
flash_write(_flash_write),
flash_read(_flash_read),
flash_erase(_flash_erase),
flash_erase_ok(_flash_erase_ok) {}
// initialise storage
bool AP_FlashStorage::init(void)
{
debug("running init()\n");
// start with empty memory buffer
memset(mem_buffer, 0, storage_size);
// find state of sectors
struct sector_header header[2];
// read headers and possibly initialise if bad signature
for (uint8_t i=0; i<2; i++) {
if (!flash_read(i, 0, (uint8_t *)&header[i], sizeof(header[i]))) {
return false;
}
bool bad_header = (header[i].signature != signature);
enum SectorState state = (enum SectorState)header[i].state;
if (state != SECTOR_STATE_AVAILABLE &&
state != SECTOR_STATE_IN_USE &&
state != SECTOR_STATE_FULL) {
bad_header = true;
}
// initialise if bad header
if (bad_header) {
return erase_all();
}
}
// work out the first sector to read from using sector states
enum SectorState states[2] {(enum SectorState)header[0].state, (enum SectorState)header[1].state};
uint8_t first_sector;
if (states[0] == states[1]) {
if (states[0] != SECTOR_STATE_AVAILABLE) {
return erase_all();
}
first_sector = 0;
} else if (states[0] == SECTOR_STATE_FULL) {
first_sector = 0;
} else if (states[1] == SECTOR_STATE_FULL) {
first_sector = 1;
} else if (states[0] == SECTOR_STATE_IN_USE) {
first_sector = 0;
} else if (states[1] == SECTOR_STATE_IN_USE) {
first_sector = 1;
} else {
// doesn't matter which is first
first_sector = 0;
}
// load data from any current sectors
for (uint8_t i=0; i<2; i++) {
uint8_t sector = (first_sector + i) & 1;
if (states[sector] == SECTOR_STATE_IN_USE ||
states[sector] == SECTOR_STATE_FULL) {
if (!load_sector(sector)) {
return erase_all();
}
}
}
// clear any write error
write_error = false;
reserved_space = 0;
// if the first sector is full then write out all data so we can erase it
if (states[first_sector] == SECTOR_STATE_FULL) {
current_sector = first_sector ^ 1;
if (!write_all()) {
return erase_all();
}
}
// erase any sectors marked full
for (uint8_t i=0; i<2; i++) {
if (states[i] == SECTOR_STATE_FULL) {
if (!erase_sector(i)) {
return false;
}
}
}
reserved_space = 0;
// ready to use
return true;
}
// switch full sector - should only be called when safe to have CPU
// offline for considerable periods as an erase will be needed
bool AP_FlashStorage::switch_full_sector(void)
{
debug("running switch_full_sector()\n");
// clear any write error
write_error = false;
reserved_space = 0;
if (!write_all()) {
return false;
}
if (!erase_sector(current_sector ^ 1)) {
return false;
}
return switch_sectors();
}
// write some data to virtual EEPROM
bool AP_FlashStorage::write(uint16_t offset, uint16_t length)
{
if (write_error) {
return false;
}
//debug("write at %u for %u write_offset=%u\n", offset, length, write_offset);
while (length > 0) {
uint8_t n = max_write;
if (length < n) {
n = length;
}
if (write_offset > flash_sector_size - (sizeof(struct block_header) + max_write + reserved_space)) {
if (!switch_sectors()) {
if (!flash_erase_ok()) {
return false;
}
if (!switch_full_sector()) {
return false;
}
}
}
struct block_header header;
header.state = BLOCK_STATE_WRITING;
header.block_num = offset / block_size;
header.num_blocks_minus_one = ((n + (block_size - 1)) / block_size)-1;
uint16_t block_ofs = header.block_num*block_size;
uint16_t block_nbytes = (header.num_blocks_minus_one+1)*block_size;
if (!flash_write(current_sector, write_offset, (uint8_t*)&header, sizeof(header))) {
return false;
}
if (!flash_write(current_sector, write_offset+sizeof(header), &mem_buffer[block_ofs], block_nbytes)) {
return false;
}
header.state = BLOCK_STATE_VALID;
if (!flash_write(current_sector, write_offset, (uint8_t*)&header, sizeof(header))) {
return false;
}
write_offset += sizeof(header) + block_nbytes;
uint8_t n2 = block_nbytes - (offset % block_size);
//debug("write_block at %u for %u n2=%u\n", block_ofs, block_nbytes, n2);
if (n2 > length) {
break;
}
offset += n2;
length -= n2;
}
// handle wrap to next sector
// write data
// write header word
return true;
}
/*
load all data from a flash sector into mem_buffer
*/
bool AP_FlashStorage::load_sector(uint8_t sector)
{
uint32_t ofs = sizeof(sector_header);
while (ofs < flash_sector_size - sizeof(struct block_header)) {
struct block_header header;
if (!flash_read(sector, ofs, (uint8_t *)&header, sizeof(header))) {
return false;
}
enum BlockState state = (enum BlockState)header.state;
switch (state) {
case BLOCK_STATE_AVAILABLE:
// we've reached the end
write_offset = ofs;
return true;
case BLOCK_STATE_VALID:
case BLOCK_STATE_WRITING: {
uint16_t block_ofs = header.block_num*block_size;
uint16_t block_nbytes = (header.num_blocks_minus_one+1)*block_size;
if (block_ofs + block_nbytes > storage_size) {
return false;
}
if (state == BLOCK_STATE_VALID &&
!flash_read(sector, ofs+sizeof(header), &mem_buffer[block_ofs], block_nbytes)) {
return false;
}
//debug("read at %u for %u\n", block_ofs, block_nbytes);
ofs += block_nbytes + sizeof(header);
break;
}
default:
// invalid state
return false;
}
}
write_offset = ofs;
return true;
}
/*
erase one sector
*/
bool AP_FlashStorage::erase_sector(uint8_t sector)
{
if (!flash_erase(sector)) {
return false;
}
struct sector_header header;
header.signature = signature;
header.state = SECTOR_STATE_AVAILABLE;
return flash_write(sector, 0, (const uint8_t *)&header, sizeof(header));
}
/*
erase both sectors
*/
bool AP_FlashStorage::erase_all(void)
{
write_error = false;
// start with empty memory buffer
memset(mem_buffer, 0, storage_size);
current_sector = 0;
write_offset = sizeof(struct sector_header);
if (!erase_sector(0) || !erase_sector(1)) {
return false;
}
// mark current sector as in-use
struct sector_header header;
header.signature = signature;
header.state = SECTOR_STATE_IN_USE;
return flash_write(current_sector, 0, (const uint8_t *)&header, sizeof(header));
}
/*
write all of mem_buffer to current sector
*/
bool AP_FlashStorage::write_all(void)
{
debug("write_all to sector %u at %u with reserved_space=%u\n",
current_sector, write_offset, reserved_space);
for (uint16_t ofs=0; ofs