// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); static int8_t test_radio(uint8_t argc, const Menu::arg *argv); static int8_t test_passthru(uint8_t argc, const Menu::arg *argv); static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); static int8_t test_gps(uint8_t argc, const Menu::arg *argv); #if CONFIG_ADC == ENABLED static int8_t test_adc(uint8_t argc, const Menu::arg *argv); #endif static int8_t test_imu(uint8_t argc, const Menu::arg *argv); static int8_t test_battery(uint8_t argc, const Menu::arg *argv); static int8_t test_current(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv); static int8_t test_wp(uint8_t argc, const Menu::arg *argv); static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv); static int8_t test_pressure(uint8_t argc, const Menu::arg *argv); static int8_t test_mag(uint8_t argc, const Menu::arg *argv); static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv); static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv); #if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2 static int8_t test_dipswitches(uint8_t argc, const Menu::arg *argv); #endif // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Common for implementation details static const struct Menu::command test_menu_commands[] PROGMEM = { {"pwm", test_radio_pwm}, {"radio", test_radio}, {"passthru", test_passthru}, {"failsafe", test_failsafe}, {"battery", test_battery}, {"relay", test_relay}, {"waypoints", test_wp}, {"xbee", test_xbee}, {"eedump", test_eedump}, {"modeswitch", test_modeswitch}, #if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2 {"dipswitches", test_dipswitches}, #endif // Tests below here are for hardware sensors only present // when real sensors are attached or they are emulated #if HIL_MODE == HIL_MODE_DISABLED #if CONFIG_ADC == ENABLED {"adc", test_adc}, #endif {"gps", test_gps}, {"rawgps", test_rawgps}, {"imu", test_imu}, {"airspeed", test_airspeed}, {"airpressure", test_pressure}, {"compass", test_mag}, {"current", test_current}, #elif HIL_MODE == HIL_MODE_SENSORS {"adc", test_adc}, {"gps", test_gps}, {"imu", test_imu}, {"compass", test_mag}, #elif HIL_MODE == HIL_MODE_ATTITUDE #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); static int8_t test_mode(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("Test Mode\n\n")); test_menu.run(); return 0; } static void print_hit_enter() { Serial.printf_P(PSTR("Hit Enter to exit.\n\n")); } static int8_t test_eedump(uint8_t argc, const Menu::arg *argv) { int i, j; // hexdump the EEPROM for (i = 0; i < EEPROM_MAX_ADDR; i += 16) { Serial.printf_P(PSTR("%04x:"), i); for (j = 0; j < 16; j++) Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j))); Serial.println(); } return(0); } static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); Serial.printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), g.channel_roll.radio_in, g.channel_pitch.radio_in, g.channel_throttle.radio_in, g.channel_rudder.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in); if(Serial.available() > 0){ return (0); } } } static int8_t test_passthru(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); // New radio frame? (we could use also if((millis()- timer) > 20) if (APM_RC.GetState() == 1){ Serial.print("CH:"); for(int i = 0; i < 8; i++){ Serial.print(APM_RC.InputCh(i)); // Print channel values Serial.print(","); APM_RC.OutputCh(i, APM_RC.InputCh(i)); // Copy input to Servos } Serial.println(); } if (Serial.available() > 0){ return (0); } } return 0; } static int8_t test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); #if THROTTLE_REVERSE == 1 Serial.printf_P(PSTR("Throttle is reversed in config: \n")); delay(1000); #endif // read the radio to set trims // --------------------------- trim_radio(); while(1){ delay(20); read_radio(); update_servo_switches(); g.channel_roll.calc_pwm(); g.channel_pitch.calc_pwm(); g.channel_throttle.calc_pwm(); g.channel_rudder.calc_pwm(); // write out the servo PWM values // ------------------------------ set_servos(); Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), g.channel_roll.control_in, g.channel_pitch.control_in, g.channel_throttle.control_in, g.channel_rudder.control_in, g.rc_5.control_in, g.rc_6.control_in, g.rc_7.control_in, g.rc_8.control_in); if(Serial.available() > 0){ return (0); } } } static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv) { byte fail_test; print_hit_enter(); for(int i = 0; i < 50; i++){ delay(20); read_radio(); } // read the radio to set trims // --------------------------- trim_radio(); oldSwitchPosition = readSwitch(); Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); while(g.channel_throttle.control_in > 0){ delay(20); read_radio(); } while(1){ delay(20); read_radio(); if(g.channel_throttle.control_in > 0){ Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.channel_throttle.control_in); fail_test++; } if(oldSwitchPosition != readSwitch()){ Serial.printf_P(PSTR("CONTROL MODE CHANGED: ")); Serial.println(flight_mode_strings[readSwitch()]); fail_test++; } if(g.throttle_fs_enabled && g.channel_throttle.get_failsafe()){ Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.channel_throttle.radio_in); Serial.println(flight_mode_strings[readSwitch()]); fail_test++; } if(fail_test > 0){ return (0); } if(Serial.available() > 0){ Serial.printf_P(PSTR("LOS caused no change in APM.\n")); return (0); } } } static int8_t test_battery(uint8_t argc, const Menu::arg *argv) { if (g.battery_monitoring >=1 && g.battery_monitoring < 4) { for (int i = 0; i < 80; i++){ // Need to get many samples for filter to stabilize delay(20); read_battery(); } Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n"), battery_voltage1, battery_voltage2, battery_voltage3, battery_voltage4); } else { Serial.printf_P(PSTR("Not enabled\n")); } return (0); } static int8_t test_current(uint8_t argc, const Menu::arg *argv) { if (g.battery_monitoring == 4) { print_hit_enter(); delta_ms_medium_loop = 100; while(1){ delay(100); read_radio(); read_battery(); Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"), battery_voltage, current_amps, current_total); // write out the servo PWM values // ------------------------------ set_servos(); if(Serial.available() > 0){ return (0); } } } else { Serial.printf_P(PSTR("Not enabled\n")); return (0); } } static int8_t test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ Serial.printf_P(PSTR("Relay on\n")); relay.on(); delay(3000); if(Serial.available() > 0){ return (0); } Serial.printf_P(PSTR("Relay off\n")); relay.off(); delay(3000); if(Serial.available() > 0){ return (0); } } } static int8_t test_wp(uint8_t argc, const Menu::arg *argv) { delay(1000); // save the alitude above home option if(g.RTL_altitude < 0){ Serial.printf_P(PSTR("Hold current altitude\n")); }else{ Serial.printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude/100); } Serial.printf_P(PSTR("%d waypoints\n"), (int)g.command_total); Serial.printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius); Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius); for(byte i = 0; i <= g.command_total; i++){ struct Location temp = get_cmd_with_index(i); test_wp_print(&temp, i); } return (0); } static void test_wp_print(struct Location *cmd, byte wp_index) { Serial.printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"), (int)wp_index, (int)cmd->id, (int)cmd->options, (int)cmd->p1, cmd->alt, cmd->lat, cmd->lng); } static int8_t test_xbee(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n")); while(1){ if (Serial3.available()) Serial3.write(Serial3.read()); if(Serial.available() > 0){ return (0); } } } static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Control CH ")); Serial.println(FLIGHT_MODE_CHANNEL, DEC); while(1){ delay(20); byte switchPosition = readSwitch(); if (oldSwitchPosition != switchPosition){ Serial.printf_P(PSTR("Position %d\n"), switchPosition); oldSwitchPosition = switchPosition; } if(Serial.available() > 0){ return (0); } } } #if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2 static int8_t test_dipswitches(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); if (!g.switch_enable) { Serial.println_P(PSTR("dip switches disabled, using EEPROM")); } while(1){ delay(100); update_servo_switches(); if (g.mix_mode == 0) { Serial.printf_P(PSTR("Mix:standard \trev roll:%d, rev pitch:%d, rev rudder:%d\n"), (int)g.channel_roll.get_reverse(), (int)g.channel_pitch.get_reverse(), (int)g.channel_rudder.get_reverse()); } else { Serial.printf_P(PSTR("Mix:elevons \trev elev:%d, rev ch1:%d, rev ch2:%d\n"), (int)g.reverse_elevons, (int)g.reverse_ch1_elevon, (int)g.reverse_ch2_elevon); } if(Serial.available() > 0){ return (0); } } } #endif // CONFIG_APM_HARDWARE != APM_HARDWARE_APM2 //------------------------------------------------------------------------------------------- // tests in this section are for real sensors or sensors that have been simulated #if HIL_MODE == HIL_MODE_DISABLED || HIL_MODE == HIL_MODE_SENSORS #if CONFIG_ADC == ENABLED static int8_t test_adc(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); isr_registry.init(); timer_scheduler.init( &isr_registry ); adc.Init(&timer_scheduler); delay(1000); Serial.printf_P(PSTR("ADC\n")); delay(1000); while(1){ for (int i=0;i<9;i++) Serial.printf_P(PSTR("%.1f\t"),adc.Ch(i)); Serial.println(); delay(100); if(Serial.available() > 0){ return (0); } } } #endif // CONFIG_ADC static int8_t test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(333); // Blink GPS LED if we don't have a fix // ------------------------------------ update_GPS_light(); g_gps->update(); if (g_gps->new_data){ Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"), g_gps->latitude, g_gps->longitude, g_gps->altitude/100, g_gps->num_sats); }else{ Serial.printf_P(PSTR(".")); } if(Serial.available() > 0){ return (0); } } } static int8_t test_imu(uint8_t argc, const Menu::arg *argv) { //Serial.printf_P(PSTR("Calibrating.")); isr_registry.init(); timer_scheduler.init( &isr_registry ); imu.init(IMU::COLD_START, delay, &timer_scheduler); print_hit_enter(); delay(1000); while(1){ delay(20); if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator fast_loopTimer = millis(); // IMU // --- dcm.update_DCM(); if(g.compass_enabled) { medium_loopCounter++; if(medium_loopCounter == 5){ compass.read(); // Read magnetometer compass.calculate(dcm.get_dcm_matrix()); // Calculate heading medium_loopCounter = 0; } } // We are using the IMU // --------------------- Vector3f gyros = imu.get_gyro(); Vector3f accels = imu.get_accel(); Serial.printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"), (int)dcm.roll_sensor / 100, (int)dcm.pitch_sensor / 100, (uint16_t)dcm.yaw_sensor / 100, gyros.x, gyros.y, gyros.z, accels.x, accels.y, accels.z); } if(Serial.available() > 0){ return (0); } } } static int8_t test_mag(uint8_t argc, const Menu::arg *argv) { if (!g.compass_enabled) { Serial.printf_P(PSTR("Compass: ")); print_enabled(false); return (0); } compass.set_orientation(MAG_ORIENTATION); if (!compass.init()) { Serial.println_P(PSTR("Compass initialisation failed!")); return 0; } dcm.set_compass(&compass); report_compass(); // we need the DCM initialised for this test isr_registry.init(); timer_scheduler.init( &isr_registry ); imu.init(IMU::COLD_START, delay, &timer_scheduler); int counter = 0; //Serial.printf_P(PSTR("MAG_ORIENTATION: %d\n"), MAG_ORIENTATION); print_hit_enter(); while(1) { delay(20); if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator fast_loopTimer = millis(); // IMU // --- dcm.update_DCM(); medium_loopCounter++; if(medium_loopCounter == 5){ compass.read(); // Read magnetometer compass.calculate(dcm.get_dcm_matrix()); // Calculate heading compass.null_offsets(dcm.get_dcm_matrix()); medium_loopCounter = 0; } counter++; if (counter>20) { Vector3f maggy = compass.get_offsets(); Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), (wrap_360(ToDeg(compass.heading) * 100)) /100, compass.mag_x, compass.mag_y, compass.mag_z, maggy.x, maggy.y, maggy.z); counter=0; } } if (Serial.available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. Serial.println_P(PSTR("saving offsets")); compass.save_offsets(); return (0); } #endif // HIL_MODE == HIL_MODE_DISABLED || HIL_MODE == HIL_MODE_SENSORS //------------------------------------------------------------------------------------------- // real sensors that have not been simulated yet go here #if HIL_MODE == HIL_MODE_DISABLED static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv) { float airspeed_ch = adc.Ch(AIRSPEED_CH); // Serial.println(adc.Ch(AIRSPEED_CH)); Serial.printf_P(PSTR("airspeed_ch: %.1f\n"), airspeed_ch); if (g.airspeed_enabled == false){ Serial.printf_P(PSTR("airspeed: ")); print_enabled(false); return (0); }else{ print_hit_enter(); zero_airspeed(); Serial.printf_P(PSTR("airspeed: ")); print_enabled(true); while(1){ delay(20); read_airspeed(); Serial.printf_P(PSTR("%.1f m/s\n"), airspeed / 100.0); if(Serial.available() > 0){ return (0); } } } } static int8_t test_pressure(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("Uncalibrated relative airpressure\n")); print_hit_enter(); home.alt = 0; wp_distance = 0; init_barometer(); while(1){ delay(100); current_loc.alt = read_barometer() + home.alt; Serial.printf_P(PSTR("Alt: %0.2fm, Raw: %ld\n"), current_loc.alt / 100.0, abs_pressure); if(Serial.available() > 0){ return (0); } } } static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ if (Serial3.available()){ digitalWrite(B_LED_PIN, LED_ON); // Blink Yellow LED if we are sending data to GPS Serial1.write(Serial3.read()); digitalWrite(B_LED_PIN, LED_OFF); } if (Serial1.available()){ digitalWrite(C_LED_PIN, LED_ON); // Blink Red LED if we are receiving data from GPS Serial3.write(Serial1.read()); digitalWrite(C_LED_PIN, LED_OFF); } if(Serial.available() > 0){ return (0); } } } #endif // HIL_MODE == HIL_MODE_DISABLED #endif // CLI_ENABLED