// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS static int8_t test_baro(uint8_t argc, const Menu::arg *argv); #endif static int8_t test_battery(uint8_t argc, const Menu::arg *argv); static int8_t test_compass(uint8_t argc, const Menu::arg *argv); static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); static int8_t test_gps(uint8_t argc, const Menu::arg *argv); static int8_t test_ins(uint8_t argc, const Menu::arg *argv); static int8_t test_logging(uint8_t argc, const Menu::arg *argv); static int8_t test_motors(uint8_t argc, const Menu::arg *argv); static int8_t test_optflow(uint8_t argc, const Menu::arg *argv); static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); static int8_t test_radio(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv); #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 static int8_t test_shell(uint8_t argc, const Menu::arg *argv); #endif #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); #endif //static int8_t test_toy(uint8_t argc, const Menu::arg *argv); static int8_t test_tuning(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of printf that reads from flash memory /*static int8_t help_test(uint8_t argc, const Menu::arg *argv) * { * cliSerial->printf_P(PSTR("\n" * "Commands:\n" * " radio\n" * " servos\n" * " g_gps\n" * " imu\n" * " battery\n" * "\n")); * }*/ // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details const struct Menu::command test_menu_commands[] PROGMEM = { #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS {"baro", test_baro}, #endif {"battery", test_battery}, {"compass", test_compass}, {"eedump", test_eedump}, {"gps", test_gps}, {"ins", test_ins}, {"logging", test_logging}, {"motors", test_motors}, {"optflow", test_optflow}, {"pwm", test_radio_pwm}, {"radio", test_radio}, {"relay", test_relay}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 {"shell", test_shell}, #endif #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS {"sonar", test_sonar}, #endif // {"toy", test_toy}, {"tune", test_tuning} }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); static int8_t test_mode(uint8_t argc, const Menu::arg *argv) { test_menu.run(); return 0; } #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS static int8_t test_baro(uint8_t argc, const Menu::arg *argv) { int32_t alt; print_hit_enter(); init_barometer(); while(1) { delay(100); alt = read_barometer(); if (!barometer.healthy) { cliSerial->println_P(PSTR("not healthy")); } else { cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"), alt / 100.0, barometer.get_pressure(), 0.1*barometer.get_temperature()); } if(cliSerial->available() > 0) { return (0); } } return 0; } #endif static int8_t test_battery(uint8_t argc, const Menu::arg *argv) { // check if radio is calibration pre_arm_rc_checks(); if(!ap.pre_arm_rc_check) { cliSerial->print_P(PSTR("radio not calibrated, exiting")); return(0); } cliSerial->printf_P(PSTR("\nCareful! Motors will spin! Press Enter to start.\n")); while (cliSerial->read() != -1); /* flush */ while(!cliSerial->available()) { /* wait for input */ delay(100); } while (cliSerial->read() != -1); /* flush */ print_hit_enter(); // allow motors to spin output_min(); motors.armed(true); while(1) { delay(100); read_radio(); read_battery(); if (g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) { cliSerial->printf_P(PSTR("V: %4.4f\n"), battery_voltage1, current_amps1, current_total1); } else { cliSerial->printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"), battery_voltage1, current_amps1, current_total1); } motors.throttle_pass_through(); if(cliSerial->available() > 0) { motors.armed(false); return (0); } } motors.armed(false); return (0); } static int8_t test_compass(uint8_t argc, const Menu::arg *argv) { uint8_t delta_ms_fast_loop; if (!g.compass_enabled) { cliSerial->printf_P(PSTR("Compass: ")); print_enabled(false); return (0); } if (!compass.init()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); return 0; } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_compass(&compass); report_compass(); // we need the AHRS initialised for this test ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, flash_leds); ahrs.reset(); int16_t counter = 0; float heading = 0; print_hit_enter(); while(1) { delay(20); if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator fast_loopTimer = millis(); // INS // --- ahrs.update(); medium_loopCounter++; if(medium_loopCounter == 5) { if (compass.read()) { // Calculate heading const Matrix3f &m = ahrs.get_dcm_matrix(); heading = compass.calculate_heading(m); compass.null_offsets(); } medium_loopCounter = 0; } counter++; if (counter>20) { if (compass.healthy) { Vector3f maggy = compass.get_offsets(); cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), (wrap_360_cd(ToDeg(heading) * 100)) /100, (int)compass.mag_x, (int)compass.mag_y, (int)compass.mag_z, maggy.x, maggy.y, maggy.z); } else { cliSerial->println_P(PSTR("compass not healthy")); } counter=0; } } if (cliSerial->available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. cliSerial->println_P(PSTR("saving offsets")); compass.save_offsets(); return (0); } static int8_t test_eedump(uint8_t argc, const Menu::arg *argv) { // hexdump the EEPROM for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i += 16) { cliSerial->printf_P(PSTR("%04x:"), i); for (uint16_t j = 0; j < 16; j++) { int b = hal.storage->read_byte(i+j); cliSerial->printf_P(PSTR(" %02x"), b); } cliSerial->println(); } return(0); } static int8_t test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(100); // Blink GPS LED if we don't have a fix // ------------------------------------ update_GPS_light(); g_gps->update(); if (g_gps->new_data) { cliSerial->printf_P(PSTR("Lat: ")); print_latlon(cliSerial, g_gps->latitude); cliSerial->printf_P(PSTR(", Lon ")); print_latlon(cliSerial, g_gps->longitude); cliSerial->printf_P(PSTR(", Alt: %ldm, #sats: %d\n"), g_gps->altitude/100, g_gps->num_sats); g_gps->new_data = false; }else{ cliSerial->print_P(PSTR(".")); } if(cliSerial->available() > 0) { return (0); } } return 0; } static int8_t test_ins(uint8_t argc, const Menu::arg *argv) { Vector3f gyro, accel; print_hit_enter(); cliSerial->printf_P(PSTR("INS\n")); delay(1000); ahrs.init(); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, flash_leds); delay(50); while(1) { ins.update(); gyro = ins.get_gyro(); accel = ins.get_accel(); float test = accel.length() / GRAVITY_MSS; cliSerial->printf_P(PSTR("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %74f | %7.4f\n"), accel.x, accel.y, accel.z, gyro.x, gyro.y, gyro.z, test); delay(40); if(cliSerial->available() > 0) { return (0); } } } /* * test the dataflash is working */ static int8_t test_logging(uint8_t argc, const Menu::arg *argv) { cliSerial->println_P(PSTR("Testing dataflash logging")); DataFlash.ShowDeviceInfo(cliSerial); return 0; } static int8_t test_motors(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR( "Connect battery for this test.\n" "Motors will not spin in channel order (1,2,3,4) but by frame position order.\n" "Front (& right of centerline) motor first, then in clockwise order around frame.\n" "http://code.google.com/p/arducopter/wiki/AC2_Props_2 for demo video.\n" "Remember to disconnect battery after this test.\n" "Any key to exit.\n")); // ensure all values have been sent to motors motors.set_update_rate(g.rc_speed); motors.set_frame_orientation(g.frame_orientation); motors.set_min_throttle(g.throttle_min); motors.set_mid_throttle(g.throttle_mid); motors.set_max_throttle(g.throttle_max); // enable motors init_rc_out(); while(1) { delay(20); read_radio(); motors.output_test(); if(cliSerial->available() > 0) { g.esc_calibrate.set_and_save(0); return(0); } } } static int8_t test_optflow(uint8_t argc, const Menu::arg *argv) { #if OPTFLOW == ENABLED if(g.optflow_enabled) { cliSerial->printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID)); print_hit_enter(); while(1) { delay(200); optflow.update(millis()); Log_Write_Optflow(); cliSerial->printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"), optflow.x, optflow.dx, optflow.y, optflow.dy, optflow.surface_quality); if(cliSerial->available() > 0) { return (0); } } } else { cliSerial->printf_P(PSTR("OptFlow: ")); print_enabled(false); } return (0); #else return (0); #endif // OPTFLOW == ENABLED } static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); // servo Yaw //APM_RC.OutputCh(CH_7, g.rc_4.radio_out); cliSerial->printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(20); read_radio(); cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), g.rc_1.control_in, g.rc_2.control_in, g.rc_3.control_in, g.rc_4.control_in, g.rc_5.control_in, g.rc_6.control_in, g.rc_7.control_in); //cliSerial->printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100)); /*cliSerial->printf_P(PSTR( "min: %d" * "\t in: %d" * "\t pwm_in: %d" * "\t sout: %d" * "\t pwm_out %d\n"), * g.rc_3.radio_min, * g.rc_3.control_in, * g.rc_3.radio_in, * g.rc_3.servo_out, * g.rc_3.pwm_out * ); */ if(cliSerial->available() > 0) { return (0); } } } static int8_t test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { cliSerial->printf_P(PSTR("Relay on\n")); relay.on(); delay(3000); if(cliSerial->available() > 0) { return (0); } cliSerial->printf_P(PSTR("Relay off\n")); relay.off(); delay(3000); if(cliSerial->available() > 0) { return (0); } } } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 /* * run a debug shell */ static int8_t test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif #if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS /* * test the sonar */ static int8_t test_sonar(uint8_t argc, const Menu::arg *argv) { #if CONFIG_SONAR == ENABLED if(g.sonar_enabled == false) { cliSerial->printf_P(PSTR("Sonar disabled\n")); return (0); } // make sure sonar is initialised init_sonar(); print_hit_enter(); while(1) { delay(100); cliSerial->printf_P(PSTR("Sonar: %d cm\n"), sonar->read()); if(cliSerial->available() > 0) { return (0); } } #endif return (0); } #endif /* //static int8_t //test_toy(uint8_t argc, const Menu::arg *argv) { for(altitude_error = 2000; altitude_error > -100; altitude_error--){ int16_t temp = get_desired_climb_rate(); cliSerial->printf("%ld, %d\n", altitude_error, temp); } return 0; } { wp_distance = 0; int16_t max_speed = 0; for(int16_t i = 0; i < 200; i++){ int32_t temp = 2 * 100 * (wp_distance - wp_nav.get_waypoint_radius()); max_speed = sqrtf((float)temp); max_speed = min(max_speed, wp_nav.get_horizontal_speed()); cliSerial->printf("Zspeed: %ld, %d, %ld\n", temp, max_speed, wp_distance); wp_distance += 100; } return 0; } //*/ /*static int8_t * //test_toy(uint8_t argc, const Menu::arg *argv) * { * int16_t yaw_rate; * int16_t roll_rate; * g.rc_1.control_in = -2500; * g.rc_2.control_in = 2500; * * g.toy_yaw_rate = 3; * yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; * roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; * cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); * * g.toy_yaw_rate = 2; * yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; * roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; * cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); * * g.toy_yaw_rate = 1; * yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; * roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; * cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate); * }*/ static int8_t test_tuning(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); while(1) { delay(200); read_radio(); tuning(); cliSerial->printf_P(PSTR("tune: %1.3f\n"), tuning_value); if(cliSerial->available() > 0) { return (0); } } } static void print_hit_enter() { cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n")); } #endif // CLI_ENABLED