/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
simulator connector for XPlane
*/
#include "SIM_XPlane.h"
#include
#include
#include
#include
#include
#include
#include
#include
extern const AP_HAL::HAL& hal;
namespace SITL {
XPlane::XPlane(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str)
{
use_time_sync = false;
const char *colon = strchr(frame_str, ':');
if (colon) {
xplane_ip = colon+1;
}
heli_frame = (strstr(frame_str, "-heli") != nullptr);
socket_in.bind("0.0.0.0", bind_port);
printf("Waiting for XPlane data on UDP port %u and sending to port %u\n",
(unsigned)bind_port, (unsigned)xplane_port);
// XPlane sensor data is not good enough for EKF. Use fake EKF by default
AP_Param::set_default_by_name("AHRS_EKF_TYPE", 10);
AP_Param::set_default_by_name("INS_GYR_CAL", 0);
}
/*
change what data is requested from XPlane. This saves the user from
having to setup the data screen correctly
*/
void XPlane::select_data(uint64_t usel_mask, uint64_t sel_mask)
{
struct PACKED {
uint8_t marker[5] { 'D', 'S', 'E', 'L', '0' };
uint32_t data[8] {};
} dsel;
uint8_t count = 0;
for (uint8_t i=0; i<64 && count<8; i++) {
if ((((uint64_t)1)< wait_time_ms &&
now+1 >= last_data_time_ms + xplane_frame_time) {
wait_time_ms = 10;
}
ssize_t len = socket_in.recv(pkt, sizeof(pkt), wait_time_ms);
if (len < pkt_len+5 || memcmp(pkt, "DATA@", 5) != 0) {
// not a data packet we understand
goto failed;
}
len -= 5;
if (!connected) {
// we now know the IP X-Plane is using
uint16_t port;
socket_in.last_recv_address(xplane_ip, port);
socket_out.connect(xplane_ip, xplane_port);
connected = true;
printf("Connected to %s:%u\n", xplane_ip, (unsigned)xplane_port);
}
while (len >= pkt_len) {
const float *data = (const float *)p;
uint8_t code = p[0];
// keep a mask of what codes we have received
if (code < 64) {
data_mask |= (((uint64_t)1) << code);
}
switch (code) {
case Times: {
uint64_t tus = data[3] * 1.0e6f;
if (tus + time_base_us <= time_now_us) {
uint64_t tdiff = time_now_us - (tus + time_base_us);
if (tdiff > 1e6f) {
printf("X-Plane time reset %lu\n", (unsigned long)tdiff);
}
time_base_us = time_now_us - tus;
}
uint64_t tnew = time_base_us + tus;
//uint64_t dt = tnew - time_now_us;
//printf("dt %u\n", (unsigned)dt);
time_now_us = tnew;
break;
}
case LatLonAlt: {
loc.lat = data[1] * 1e7;
loc.lng = data[2] * 1e7;
loc.alt = data[3] * FEET_TO_METERS * 100.0f;
const float altitude_above_ground = data[4] * FEET_TO_METERS;
ground_level = loc.alt * 0.01f - altitude_above_ground;
break;
}
case Speed:
airspeed = data[2] * KNOTS_TO_METERS_PER_SECOND;
airspeed_pitot = airspeed;
break;
case AoA:
// ignored
break;
case Trim:
if (heli_frame) {
// use flaps for collective as no direct collective data input
rcin[2] = data[4];
}
break;
case PitchRollHeading: {
float roll, pitch, yaw;
pitch = radians(data[1]);
roll = radians(data[2]);
yaw = radians(data[3]);
dcm.from_euler(roll, pitch, yaw);
break;
}
case AtmosphereWeather:
// ignored
break;
case LocVelDistTraveled:
pos.y = data[1];
pos.z = -data[2];
pos.x = -data[3];
velocity_ef.y = data[4];
velocity_ef.z = -data[5];
velocity_ef.x = -data[6];
break;
case AngularVelocities:
gyro.y = data[1];
gyro.x = data[2];
gyro.z = data[3];
break;
case Gload:
accel_body.z = -data[5] * GRAVITY_MSS;
accel_body.x = data[6] * GRAVITY_MSS;
accel_body.y = data[7] * GRAVITY_MSS;
break;
case Joystick1:
rcin_chan_count = 4;
rcin[0] = (data[2] + 1)*0.5f;
rcin[1] = (data[1] + 1)*0.5f;
rcin[3] = (data[3] + 1)*0.5f;
break;
case ThrottleCommand: {
if (!heli_frame) {
/* getting joystick throttle input is very weird. The
* problem is that XPlane sends the ThrottleCommand packet
* both for joystick throttle input and for throttle that
* we have provided over the link. So we need some way to
* detect when we get our own values back. The trick used
* is to add throttle_magic to the values we send, then
* detect this offset in the data coming back. Very ugly,
* but I can't find a better way of allowing joystick
* input from XPlane10
*/
bool has_magic = ((uint32_t)(data[1] * throttle_magic_scale) % 1000U) == (uint32_t)(throttle_magic * throttle_magic_scale);
if (data[1] < 0 ||
data[1] == throttle_sent ||
has_magic) {
break;
}
rcin[2] = data[1];
}
break;
}
case PropPitch: {
break;
}
case EngineRPM:
rpm1 = data[1];
break;
case PropRPM:
rpm2 = data[1];
break;
case Joystick2:
break;
case Generator:
/*
in order to get interlock switch on helis we map the
"generator1 on/off" function of XPlane 10 to channel 8.
*/
rcin_chan_count = 8;
rcin[7] = data[1];
break;
case Mixture:
// map channel 6 and 7 from Mixture3 and Mixture4 for extra channels
rcin_chan_count = MAX(7, rcin_chan_count);
rcin[5] = data[3];
rcin[6] = data[4];
break;
}
len -= pkt_len;
p += pkt_len;
}
if (data_mask != required_mask) {
// ask XPlane to change what data it sends
uint64_t usel = data_mask & ~required_mask;
uint64_t sel = required_mask & ~data_mask;
usel &= ~unselected_mask;
if (usel || sel) {
select_data(usel, sel);
goto failed;
}
}
position = pos + position_zero;
update_position();
accel_earth = dcm * accel_body;
accel_earth.z += GRAVITY_MSS;
// the position may slowly deviate due to float accuracy and longitude scaling
if (get_distance(loc, location) > 4 || abs(loc.alt - location.alt)*0.01f > 2.0f) {
printf("X-Plane home reset dist=%f alt=%.1f/%.1f\n",
get_distance(loc, location), loc.alt*0.01f, location.alt*0.01f);
// reset home location
position_zero(-pos.x, -pos.y, -pos.z);
home.lat = loc.lat;
home.lng = loc.lng;
home.alt = loc.alt;
position.x = 0;
position.y = 0;
position.z = 0;
update_position();
}
update_mag_field_bf();
if (now > last_data_time_ms && now - last_data_time_ms < 100) {
xplane_frame_time = now - last_data_time_ms;
}
last_data_time_ms = AP_HAL::millis();
report.data_count++;
report.frame_count++;
return true;
failed:
if (AP_HAL::millis() - last_data_time_ms > 200) {
// don't extrapolate beyond 0.2s
return false;
}
// advance time by 1ms
Vector3f rot_accel;
frame_time_us = 1000;
float delta_time = frame_time_us * 1e-6f;
time_now_us += frame_time_us;
// extrapolate sensors
dcm.rotate(gyro * delta_time);
dcm.normalize();
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0,0,-GRAVITY_MSS));
// new velocity and position vectors
velocity_ef += accel_earth * delta_time;
position += velocity_ef * delta_time;
velocity_air_ef = velocity_ef + wind_ef;
velocity_air_bf = dcm.transposed() * velocity_air_ef;
update_position();
update_mag_field_bf();
report.frame_count++;
return false;
}
/*
send data to X-Plane via UDP
*/
void XPlane::send_data(const struct sitl_input &input)
{
float aileron = (input.servos[0]-1500)/500.0f;
float elevator = (input.servos[1]-1500)/500.0f;
float throttle = (input.servos[2]-1000)/1000.0;
float rudder = (input.servos[3]-1500)/500.0f;
struct PACKED {
uint8_t marker[5] { 'D', 'A', 'T', 'A', '0' };
uint32_t code;
float data[8];
} d {};
if (input.servos[0] == 0) {
aileron = 0;
}
if (input.servos[1] == 0) {
elevator = 0;
}
if (input.servos[2] == 0) {
throttle = 0;
}
if (input.servos[3] == 0) {
rudder = 0;
}
// we add the throttle_magic to the throttle value we send so we
// can detect when we get it back
throttle = ((uint32_t)(throttle * 1000)) * 1.0e-3f + throttle_magic;
uint8_t flap_chan;
if (SRV_Channels::find_channel(SRV_Channel::k_flap, flap_chan) ||
SRV_Channels::find_channel(SRV_Channel::k_flap_auto, flap_chan)) {
float flap = (input.servos[flap_chan]-1000)/1000.0;
if (flap != last_flap) {
send_dref("sim/flightmodel/controls/flaprqst", flap);
send_dref("sim/aircraft/overflow/acf_flap_arm", flap>0?1:0);
}
}
d.code = FlightCon;
d.data[0] = elevator;
d.data[1] = aileron;
d.data[2] = rudder;
d.data[4] = rudder;
socket_out.send(&d, sizeof(d));
if (!heli_frame) {
d.code = ThrottleCommand;
d.data[0] = throttle;
d.data[1] = throttle;
d.data[2] = throttle;
d.data[3] = throttle;
d.data[4] = 0;
socket_out.send(&d, sizeof(d));
} else {
// send chan3 as collective pitch, on scale from -10 to +10
float collective = 10*(input.servos[2]-1500)/500.0;
// and send throttle from channel 8
throttle = (input.servos[7]-1000)/1000.0;
// allow for extra throttle outputs for special aircraft
float throttle2 = (input.servos[5]-1000)/1000.0;
float throttle3 = (input.servos[6]-1000)/1000.0;
d.code = PropPitch;
d.data[0] = collective;
d.data[1] = -rudder*15; // reverse sense of rudder, 15 degrees pitch range
d.data[2] = 0;
d.data[3] = 0;
d.data[4] = 0;
socket_out.send(&d, sizeof(d));
d.code = ThrottleCommand;
d.data[0] = throttle;
d.data[1] = throttle;
d.data[2] = throttle2;
d.data[3] = throttle3;
d.data[4] = 0;
socket_out.send(&d, sizeof(d));
}
throttle_sent = throttle;
}
/*
send DREF to X-Plane via UDP
*/
void XPlane::send_dref(const char *name, float value)
{
struct PACKED {
uint8_t marker[5] { 'D', 'R', 'E', 'F', '0' };
float value;
char name[500];
} d {};
d.value = value;
strcpy(d.name, name);
socket_out.send(&d, sizeof(d));
}
/*
update the XPlane simulation by one time step
*/
void XPlane::update(const struct sitl_input &input)
{
if (receive_data()) {
send_data(input);
}
uint32_t now = AP_HAL::millis();
if (report.last_report_ms == 0) {
report.last_report_ms = now;
}
if (now - report.last_report_ms > 5000) {
float dt = (now - report.last_report_ms) * 1.0e-3f;
printf("Data rate: %.1f FPS Frame rate: %.1f FPS\n",
report.data_count/dt, report.frame_count/dt);
report.last_report_ms = now;
report.data_count = 0;
report.frame_count = 0;
}
}
} // namespace SITL