/* AP_AHRS_Quaternion code, based on quaternion code from Jeb Madgwick See http://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf adapted to APM by Andrew Tridgell based on initial idea, discussions and prototype from Justin Beech. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #include #include // to keep the code as close to the original as possible, we use these // macros for quaternion access #define SEq_1 q.q1 #define SEq_2 q.q2 #define SEq_3 q.q3 #define SEq_4 q.q4 // Function to compute one quaternion iteration without magnetometer void AP_AHRS_Quaternion::update_IMU(float deltat, Vector3f &gyro, Vector3f &accel) { // Local system variables float norm; // vector norm float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion derrivative from gyroscopes elements float f_1, f_2, f_3; // objective function elements float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error // Axulirary variables to avoid reapeated calcualtions float halfSEq_1 = 0.5f * SEq_1; float halfSEq_2 = 0.5f * SEq_2; float halfSEq_3 = 0.5f * SEq_3; float halfSEq_4 = 0.5f * SEq_4; float twoSEq_1 = 2.0f * SEq_1; float twoSEq_2 = 2.0f * SEq_2; float twoSEq_3 = 2.0f * SEq_3; // estimated direction of the gyroscope error (radians) Vector3f w_err; // normalise accelerometer vector accel.normalize(); if (accel.is_inf()) { // discard this data point renorm_range_count++; return; } // Compute the objective function and Jacobian f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - accel.x; f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - accel.y; f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - accel.z; J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication J_12or23 = 2.0f * SEq_4; J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication J_14or21 = twoSEq_2; J_32 = 2.0f * J_14or21; // negated in matrix multiplication J_33 = 2.0f * J_11or24; // negated in matrix multiplication // Compute the gradient (matrix multiplication) SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1; SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3; SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1; SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2; // Normalise the gradient norm = 1.0/safe_sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4); if (isinf(norm)) { // we can't do an update - discard this data point and // hope the next one is better renorm_range_count++; return; } SEqHatDot_1 *= norm; SEqHatDot_2 *= norm; SEqHatDot_3 *= norm; SEqHatDot_4 *= norm; // Compute the quaternion derrivative measured by gyroscopes SEqDot_omega_1 = -halfSEq_2 * gyro.x - halfSEq_3 * gyro.y - halfSEq_4 * gyro.z; SEqDot_omega_2 = halfSEq_1 * gyro.x + halfSEq_3 * gyro.z - halfSEq_4 * gyro.y; SEqDot_omega_3 = halfSEq_1 * gyro.y - halfSEq_2 * gyro.z + halfSEq_4 * gyro.x; SEqDot_omega_4 = halfSEq_1 * gyro.z + halfSEq_2 * gyro.y - halfSEq_3 * gyro.x; // Compute then integrate the estimated quaternion derrivative SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat; SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat; SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat; SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat; // Normalise quaternion norm = 1.0/safe_sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4); if (isinf(norm)) { // our quaternion is bad! Reset based on roll/pitch/yaw // and hope for the best ... renorm_blowup_count++; if (_compass) { _compass->null_offsets_disable(); } q.from_euler(roll, pitch, yaw); if (_compass) { _compass->null_offsets_enable(); } return; } SEq_1 *= norm; SEq_2 *= norm; SEq_3 *= norm; SEq_4 *= norm; } // Function to compute one quaternion iteration including magnetometer void AP_AHRS_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag) { // local system variables float norm; // vector norm float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion rate from gyroscopes elements float f_1, f_2, f_3, f_4, f_5, f_6; // objective function elements float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33, // objective function Jacobian elements J_41, J_42, J_43, J_44, J_51, J_52, J_53, J_54, J_61, J_62, J_63, J_64; // float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error // computed flux in the earth frame Vector3f flux; // estimated direction of the gyroscope error (radians) Vector3f w_err; // normalise accelerometer vector accel.normalize(); if (accel.is_inf()) { // discard this data point renorm_range_count++; return; } // normalise the magnetometer measurement mag.normalize(); if (mag.is_inf()) { // discard this data point renorm_range_count++; return; } // auxiliary variables to avoid repeated calculations float halfSEq_1 = 0.5f * SEq_1; float halfSEq_2 = 0.5f * SEq_2; float halfSEq_3 = 0.5f * SEq_3; float halfSEq_4 = 0.5f * SEq_4; float twoSEq_1 = 2.0f * SEq_1; float twoSEq_2 = 2.0f * SEq_2; float twoSEq_3 = 2.0f * SEq_3; float twoSEq_4 = 2.0f * SEq_4; float twob_x = 2.0f * b_x; float twob_z = 2.0f * b_z; float twob_xSEq_1 = 2.0f * b_x * SEq_1; float twob_xSEq_2 = 2.0f * b_x * SEq_2; float twob_xSEq_3 = 2.0f * b_x * SEq_3; float twob_xSEq_4 = 2.0f * b_x * SEq_4; float twob_zSEq_1 = 2.0f * b_z * SEq_1; float twob_zSEq_2 = 2.0f * b_z * SEq_2; float twob_zSEq_3 = 2.0f * b_z * SEq_3; float twob_zSEq_4 = 2.0f * b_z * SEq_4; float SEq_1SEq_2; float SEq_1SEq_3 = SEq_1 * SEq_3; float SEq_1SEq_4; float SEq_2SEq_3; float SEq_2SEq_4 = SEq_2 * SEq_4; float SEq_3SEq_4; Vector3f twom = mag * 2.0; // compute the objective function and Jacobian f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - accel.x; f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - accel.y; f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - accel.z; f_4 = twob_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twob_z * (SEq_2SEq_4 - SEq_1SEq_3) - mag.x; f_5 = twob_x * (SEq_2 * SEq_3 - SEq_1 * SEq_4) + twob_z * (SEq_1 * SEq_2 + SEq_3 * SEq_4) - mag.y; f_6 = twob_x * (SEq_1SEq_3 + SEq_2SEq_4) + twob_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3) - mag.z; J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication J_12or23 = 2.0f * SEq_4; J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication J_14or21 = twoSEq_2; J_32 = 2.0f * J_14or21; // negated in matrix multiplication J_33 = 2.0f * J_11or24; // negated in matrix multiplication J_41 = twob_zSEq_3; // negated in matrix multiplication J_42 = twob_zSEq_4; J_43 = 2.0f * twob_xSEq_3 + twob_zSEq_1; // negated in matrix multiplication J_44 = 2.0f * twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication J_51 = twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication J_52 = twob_xSEq_3 + twob_zSEq_1; J_53 = twob_xSEq_2 + twob_zSEq_4; J_54 = twob_xSEq_1 - twob_zSEq_3; // negated in matrix multiplication J_61 = twob_xSEq_3; J_62 = twob_xSEq_4 - 2.0f * twob_zSEq_2; J_63 = twob_xSEq_1 - 2.0f * twob_zSEq_3; J_64 = twob_xSEq_2; // compute the gradient (matrix multiplication) SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1 - J_41 * f_4 - J_51 * f_5 + J_61 * f_6; SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3 + J_42 * f_4 + J_52 * f_5 + J_62 * f_6; SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1 - J_43 * f_4 + J_53 * f_5 + J_63 * f_6; SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2 - J_44 * f_4 - J_54 * f_5 + J_64 * f_6; // normalise the gradient to estimate direction of the gyroscope error norm = 1.0 / safe_sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4); if (isinf(norm)) { // discard this data point renorm_range_count++; return; } SEqHatDot_1 *= norm; SEqHatDot_2 *= norm; SEqHatDot_3 *= norm; SEqHatDot_4 *= norm; // compute angular estimated direction of the gyroscope error w_err.x = twoSEq_1 * SEqHatDot_2 - twoSEq_2 * SEqHatDot_1 - twoSEq_3 * SEqHatDot_4 + twoSEq_4 * SEqHatDot_3; w_err.y = twoSEq_1 * SEqHatDot_3 + twoSEq_2 * SEqHatDot_4 - twoSEq_3 * SEqHatDot_1 - twoSEq_4 * SEqHatDot_2; w_err.z = twoSEq_1 * SEqHatDot_4 - twoSEq_2 * SEqHatDot_3 + twoSEq_3 * SEqHatDot_2 - twoSEq_4 * SEqHatDot_1; // keep track of the error rates _error_rp_sum += 0.5*(fabs(w_err.x) + fabs(w_err.y)); _error_yaw_sum += fabs(w_err.z); _error_rp_count++; _error_yaw_count++; // compute the gyroscope bias delta Vector3f drift_delta = w_err * (deltat * zeta); // don't allow the drift rate to be exceeded. This prevents a // sudden drift change coming from a outage in the compass float max_change = _gyro_drift_limit * deltat; drift_delta.x = constrain(drift_delta.x, -max_change, max_change); drift_delta.y = constrain(drift_delta.y, -max_change, max_change); drift_delta.z = constrain(drift_delta.z, -max_change, max_change); gyro_bias += drift_delta; // correct the gyro reading for drift gyro -= gyro_bias; // compute the quaternion rate measured by gyroscopes SEqDot_omega_1 = -halfSEq_2 * gyro.x - halfSEq_3 * gyro.y - halfSEq_4 * gyro.z; SEqDot_omega_2 = halfSEq_1 * gyro.x + halfSEq_3 * gyro.z - halfSEq_4 * gyro.y; SEqDot_omega_3 = halfSEq_1 * gyro.y - halfSEq_2 * gyro.z + halfSEq_4 * gyro.x; SEqDot_omega_4 = halfSEq_1 * gyro.z + halfSEq_2 * gyro.y - halfSEq_3 * gyro.x; // compute then integrate the estimated quaternion rate SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat; SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat; SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat; SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat; // normalise quaternion norm = 1.0/safe_sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4); if (isinf(norm)) { // our quaternion is bad! Reset based on roll/pitch/yaw // and hope for the best ... renorm_blowup_count++; _compass->null_offsets_disable(); q.from_euler(roll, pitch, yaw); _compass->null_offsets_disable(); return; } SEq_1 *= norm; SEq_2 *= norm; SEq_3 *= norm; SEq_4 *= norm; // compute flux in the earth frame // recompute axulirary variables SEq_1SEq_2 = SEq_1 * SEq_2; SEq_1SEq_3 = SEq_1 * SEq_3; SEq_1SEq_4 = SEq_1 * SEq_4; SEq_3SEq_4 = SEq_3 * SEq_4; SEq_2SEq_3 = SEq_2 * SEq_3; SEq_2SEq_4 = SEq_2 * SEq_4; flux.x = twom.x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twom.y * (SEq_2SEq_3 - SEq_1SEq_4) + twom.z * (SEq_2SEq_4 + SEq_1SEq_3); flux.y = twom.x * (SEq_2SEq_3 + SEq_1SEq_4) + twom.y * (0.5f - SEq_2 * SEq_2 - SEq_4 * SEq_4) + twom.z * (SEq_3SEq_4 - SEq_1SEq_2); flux.z = twom.x * (SEq_2SEq_4 - SEq_1SEq_3) + twom.y * (SEq_3SEq_4 + SEq_1SEq_2) + twom.z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3); // normalise the flux vector to have only components in the x and z b_x = sqrt((flux.x * flux.x) + (flux.y * flux.y)); b_z = flux.z; } // Function to compute one quaternion iteration void AP_AHRS_Quaternion::update(void) { Vector3f gyro, accel; float deltat; _imu->update(); deltat = _imu->get_delta_time(); if (deltat > 1.0) { // if we stop updating for 1s, we should discard this // input data. This can happen if you are running the // code under a debugger, and using this data point // will just throw off your attitude by a huge amount return; } if (!_have_initial_yaw && _compass && _compass->use_for_yaw()) { // setup the quaternion with initial compass yaw _compass->null_offsets_disable(); q.from_euler(0, 0, _compass->heading); _have_initial_yaw = true; _compass_last_update = _compass->last_update; gyro_bias.zero(); _compass->null_offsets_enable(); } // get current IMU state gyro = _imu->get_gyro(); // the quaternion system uses opposite sign for accel accel = - _imu->get_accel(); if (_centripetal && _gps && _gps->status() == GPS::GPS_OK) { // compensate for linear acceleration. This makes a // surprisingly large difference in the pitch estimate when // turning, plus on takeoff and landing float acceleration = _gps->acceleration(); accel.x += acceleration; // compensate for centripetal acceleration float veloc; veloc = _gps->ground_speed * 0.01; // be careful of the signs in this calculation. the // quaternion system uses different signs than the // rest of APM accel.y += (gyro.z - gyro_bias.z) * veloc; accel.z -= (gyro.y - gyro_bias.y) * veloc; } if (_compass != NULL && _compass->use_for_yaw()) { Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, _compass->mag_z); update_MARG(deltat, gyro, accel, mag); } else { // step the quaternion solution using just gyros and accels gyro -= gyro_bias; update_IMU(deltat, gyro, accel); } #ifdef DESKTOP_BUILD if (q.is_nan()) { SITL_debug("QUAT NAN: deltat=%f roll=%f pitch=%f yaw=%f q=[%f %f %f %f] a=[%f %f %f] g=(%f %f %f)\n", deltat, roll, pitch, yaw, q.q1, q.q2, q.q3, q.q4, accel.x, accel.y, accel.z, gyro.x, gyro.y, gyro.z); } #endif // keep the corrected gyro for reporting _gyro_corrected = gyro; // calculate our euler angles for high level control and navigation q.to_euler(&roll, &pitch, &yaw); // the code above assumes zero magnetic declination, so offset // the yaw here if (_compass != NULL) { yaw += _compass->get_declination(); } // and integer Eulers roll_sensor = 100 * ToDeg(roll); pitch_sensor = 100 * ToDeg(pitch); yaw_sensor = 100 * ToDeg(yaw); if (yaw_sensor < 0) { yaw_sensor += 36000; } } // average error in roll/pitch since last call float AP_AHRS_Quaternion::get_error_rp(void) { float ret; if (_error_rp_count == 0) { return 0; } ret = _error_rp_sum / _error_rp_count; _error_rp_sum = 0; _error_rp_count = 0; return ret; } // average error in yaw since last call float AP_AHRS_Quaternion::get_error_yaw(void) { float ret; if (_error_yaw_count == 0) { return 0; } ret = _error_yaw_sum / _error_yaw_count; _error_yaw_sum = 0; _error_yaw_count = 0; return ret; } // reset attitude system void AP_AHRS_Quaternion::reset(bool recover_eulers) { if (recover_eulers) { q.from_euler(roll, pitch, yaw); } else { q(1, 0, 0, 0); } gyro_bias.zero(); // reference direction of flux in earth frame b_x = 0; b_z = -1; }