/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /********************************************************************************/ // Command Event Handlers /********************************************************************************/ // process_nav_command - main switch statement to initiate the next nav command in the command_nav_queue static void process_nav_command() { switch(command_nav_queue.id) { case MAV_CMD_NAV_TAKEOFF: // 22 do_takeoff(); break; case MAV_CMD_NAV_WAYPOINT: // 16 Navigate to Waypoint do_nav_wp(); break; case MAV_CMD_NAV_LAND: // 21 LAND to Waypoint set_yaw_mode(YAW_HOLD); do_land(); break; case MAV_CMD_NAV_LOITER_UNLIM: // 17 Loiter indefinitely do_loiter_unlimited(); break; case MAV_CMD_NAV_LOITER_TURNS: //18 Loiter N Times do_loiter_turns(); break; case MAV_CMD_NAV_LOITER_TIME: // 19 do_loiter_time(); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: //20 do_RTL(); break; // point the copter and camera at a region of interest (ROI) case MAV_CMD_NAV_ROI: // 80 do_nav_roi(); break; default: break; } } static void process_cond_command() { switch(command_cond_queue.id) { case MAV_CMD_CONDITION_DELAY: // 112 do_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: // 114 do_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: // 113 do_change_alt(); break; case MAV_CMD_CONDITION_YAW: // 115 do_yaw(); break; default: break; } } static void process_now_command() { switch(command_cond_queue.id) { case MAV_CMD_DO_JUMP: // 177 do_jump(); break; case MAV_CMD_DO_CHANGE_SPEED: // 178 do_change_speed(); break; case MAV_CMD_DO_SET_HOME: // 179 do_set_home(); break; case MAV_CMD_DO_SET_SERVO: // 183 do_set_servo(); break; case MAV_CMD_DO_SET_RELAY: // 181 do_set_relay(); break; case MAV_CMD_DO_REPEAT_SERVO: // 184 do_repeat_servo(); break; case MAV_CMD_DO_REPEAT_RELAY: // 182 do_repeat_relay(); break; #if CAMERA == ENABLED case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| break; case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| break; case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty| do_take_picture(); break; #endif #if MOUNT == ENABLED case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty| camera_mount.configure_cmd(); break; case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty| camera_mount.control_cmd(); break; #endif default: // do nothing with unrecognized MAVLink messages break; } } /********************************************************************************/ // Verify command Handlers /********************************************************************************/ // verify_must - switch statement to ensure the active navigation command is progressing // returns true once the active navigation command completes successfully static bool verify_must() { switch(command_nav_queue.id) { case MAV_CMD_NAV_TAKEOFF: return verify_takeoff(); break; case MAV_CMD_NAV_WAYPOINT: return verify_nav_wp(); break; case MAV_CMD_NAV_LAND: return verify_land(); break; case MAV_CMD_NAV_LOITER_UNLIM: return verify_loiter_unlimited(); break; case MAV_CMD_NAV_LOITER_TURNS: return verify_loiter_turns(); break; case MAV_CMD_NAV_LOITER_TIME: return verify_loiter_time(); break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: return verify_RTL(); break; case MAV_CMD_NAV_ROI: // 80 return verify_nav_roi(); break; default: //gcs_send_text_P(SEVERITY_HIGH,PSTR(" No current Must commands")); return false; break; } } // verify_may - switch statement to ensure the active conditional command is progressing // returns true once the active conditional command completes successfully static bool verify_may() { switch(command_cond_queue.id) { case MAV_CMD_CONDITION_DELAY: return verify_wait_delay(); break; case MAV_CMD_CONDITION_DISTANCE: return verify_within_distance(); break; case MAV_CMD_CONDITION_CHANGE_ALT: return verify_change_alt(); break; case MAV_CMD_CONDITION_YAW: return verify_yaw(); break; default: //gcs_send_text_P(SEVERITY_HIGH,PSTR(" No current May commands")); return false; break; } } /********************************************************************************/ // /********************************************************************************/ // do_RTL - start Return-to-Launch static void do_RTL(void) { // set rtl state rtl_state = RTL_STATE_INITIAL_CLIMB; // set roll, pitch and yaw modes set_roll_pitch_mode(RTL_RP); set_yaw_mode(YAW_HOLD); // first stage of RTL is the initial climb so just hold current yaw set_throttle_mode(RTL_THR); // set navigation mode wp_control = LOITER_MODE; // initial climb starts at current location next_WP = current_loc; // override altitude to RTL altitude set_new_altitude(get_RTL_alt()); } /********************************************************************************/ // Nav (Must) commands /********************************************************************************/ // do_takeoff - initiate takeoff navigation command static void do_takeoff() { wp_control = LOITER_MODE; // Start with current location Location temp = current_loc; // alt is always relative temp.alt = command_nav_queue.alt; // prevent flips reset_I_all(); // Set our waypoint set_next_WP(&temp); } // do_nav_wp - initiate move to next waypoint static void do_nav_wp() { wp_control = WP_MODE; set_next_WP(&command_nav_queue); // this is our bitmask to verify we have met all conditions to move on wp_verify_byte = 0; // this will be used to remember the time in millis after we reach or pass the WP. loiter_time = 0; // this is the delay, stored in seconds and expanded to millis loiter_time_max = command_nav_queue.p1 * 1000; if((next_WP.options & WP_OPTION_ALT_REQUIRED) == false) { wp_verify_byte |= NAV_ALTITUDE; } // reset control of yaw to default if( g.yaw_override_behaviour == YAW_OVERRIDE_BEHAVIOUR_AT_NEXT_WAYPOINT ) { set_yaw_mode(AUTO_YAW); } } // do_land - initiate landing procedure static void do_land() { // hold at our current location set_next_WP(¤t_loc); wp_control = LOITER_MODE; set_throttle_mode(THROTTLE_LAND); } static void do_loiter_unlimited() { wp_control = LOITER_MODE; //cliSerial->println("dloi "); if(command_nav_queue.lat == 0) { set_next_WP(¤t_loc); wp_control = LOITER_MODE; }else{ set_next_WP(&command_nav_queue); wp_control = WP_MODE; } } // do_loiter_turns - initiate moving in a circle static void do_loiter_turns() { wp_control = CIRCLE_MODE; if(command_nav_queue.lat == 0) { // allow user to specify just the altitude if(command_nav_queue.alt > 0) { current_loc.alt = command_nav_queue.alt; } set_next_WP(¤t_loc); }else{ set_next_WP(&command_nav_queue); } circle_WP = next_WP; loiter_total = command_nav_queue.p1 * 360; loiter_sum = 0; old_wp_bearing = wp_bearing; circle_angle = wp_bearing + 18000; circle_angle = wrap_360(circle_angle); circle_angle *= RADX100; } // do_loiter_time - initiate loitering at a point for a given time period static void do_loiter_time() { if(command_nav_queue.lat == 0) { wp_control = LOITER_MODE; loiter_time = millis(); set_next_WP(¤t_loc); }else{ wp_control = WP_MODE; set_next_WP(&command_nav_queue); } loiter_time_max = command_nav_queue.p1 * 1000; // units are (seconds) } /********************************************************************************/ // Verify Nav (Must) commands /********************************************************************************/ // verify_takeoff - check if we have completed the takeoff static bool verify_takeoff() { // wait until we are ready! if(g.rc_3.control_in == 0) { return false; } // are we above our target altitude? return (current_loc.alt > next_WP.alt); } // verify_land - returns true if landing has been completed static bool verify_land() { // rely on THROTTLE_LAND mode to correctly update landing status return ap.land_complete; } // verify_nav_wp - check if we have reached the next way point static bool verify_nav_wp() { // Altitude checking if(next_WP.options & WP_OPTION_ALT_REQUIRED) { // we desire a certain minimum altitude if(alt_change_flag == REACHED_ALT) { // we have reached that altitude wp_verify_byte |= NAV_ALTITUDE; } } // Did we pass the WP? // Distance checking if((wp_distance <= (g.waypoint_radius * 100)) || check_missed_wp()) { // if we have a distance calc error, wp_distance may be less than 0 if(wp_distance > 0) { wp_verify_byte |= NAV_LOCATION; if(loiter_time == 0) { loiter_time = millis(); } } } // Hold at Waypoint checking, we cant move on until this is OK if(wp_verify_byte & NAV_LOCATION) { // we have reached our goal // loiter at the WP wp_control = LOITER_MODE; if ((millis() - loiter_time) > loiter_time_max) { wp_verify_byte |= NAV_DELAY; //gcs_send_text_P(SEVERITY_LOW,PSTR("verify_must: LOITER time complete")); //cliSerial->println("vlt done"); } } if(wp_verify_byte >= 7) { //if(wp_verify_byte & NAV_LOCATION){ gcs_send_text_fmt(PSTR("Reached Command #%i"),command_nav_index); wp_verify_byte = 0; copter_leds_nav_blink = 15; // Cause the CopterLEDs to blink three times to indicate waypoint reached return true; }else{ return false; } } static bool verify_loiter_unlimited() { if(wp_control == WP_MODE && wp_distance <= (g.waypoint_radius * 100)) { // switch to position hold wp_control = LOITER_MODE; } return false; } // verify_loiter_time - check if we have loitered long enough static bool verify_loiter_time() { if(wp_control == LOITER_MODE) { if ((millis() - loiter_time) > loiter_time_max) { return true; } } if(wp_control == WP_MODE && wp_distance <= (g.waypoint_radius * 100)) { // reset our loiter time loiter_time = millis(); // switch to position hold wp_control = LOITER_MODE; } return false; } // verify_loiter_turns - check if we have circled the point enough static bool verify_loiter_turns() { //cliSerial->printf("loiter_sum: %d \n", loiter_sum); // have we rotated around the center enough times? // ----------------------------------------------- if(abs(loiter_sum) > loiter_total) { loiter_total = 0; loiter_sum = 0; //gcs_send_text_P(SEVERITY_LOW,PSTR("verify_must: LOITER orbits complete")); // clear the command queue; return true; } return false; } // verify_RTL - handles any state changes required to implement RTL // do_RTL should have been called once first to initialise all variables // returns true with RTL has completed successfully static bool verify_RTL() { bool retval = false; switch( rtl_state ) { case RTL_STATE_INITIAL_CLIMB: // rely on verify_altitude function to update alt_change_flag when we've reached the target if(alt_change_flag == REACHED_ALT) { // Set navigation target to home set_next_WP(&home); // override target altitude to RTL altitude set_new_altitude(get_RTL_alt()); // set navigation mode wp_control = WP_MODE; // set yaw mode set_yaw_mode(RTL_YAW); // advance to next rtl state rtl_state = RTL_STATE_RETURNING_HOME; } break; case RTL_STATE_RETURNING_HOME: // if we've reached home initiate loiter if (wp_distance <= g.waypoint_radius * 100 || check_missed_wp()) { rtl_state = RTL_STATE_LOITERING_AT_HOME; wp_control = LOITER_MODE; // set loiter timer rtl_loiter_start_time = millis(); // give pilot back control of yaw set_yaw_mode(YAW_HOLD); } break; case RTL_STATE_LOITERING_AT_HOME: // check if we've loitered long enough if( millis() - rtl_loiter_start_time > (uint32_t)g.rtl_loiter_time.get() ) { // initiate landing or descent if(g.rtl_alt_final == 0 || ap.failsafe) { // land do_land(); // override landing location (do_land defaults to current location) next_WP.lat = home.lat; next_WP.lng = home.lng; // update RTL state rtl_state = RTL_STATE_LAND; }else{ // descend if(current_loc.alt > g.rtl_alt_final) { set_new_altitude(g.rtl_alt_final); } // update RTL state rtl_state = RTL_STATE_FINAL_DESCENT; } } break; case RTL_STATE_FINAL_DESCENT: // rely on altitude check to confirm we have reached final altitude if(current_loc.alt <= g.rtl_alt_final || alt_change_flag == REACHED_ALT) { // switch to regular loiter mode set_mode(LOITER); // override location and altitude set_next_WP(&home); // override altitude to RTL altitude set_new_altitude(g.rtl_alt_final); retval = true; } break; case RTL_STATE_LAND: // rely on verify_land to return correct status retval = verify_land(); break; default: // this should never happen // TO-DO: log an error retval = true; break; } // true is returned if we've successfully completed RTL return retval; } /********************************************************************************/ // Condition (May) commands /********************************************************************************/ static void do_wait_delay() { //cliSerial->print("dwd "); condition_start = millis(); condition_value = command_cond_queue.lat * 1000; // convert to milliseconds //cliSerial->println(condition_value,DEC); } static void do_change_alt() { Location temp = next_WP; condition_start = current_loc.alt; //condition_value = command_cond_queue.alt; temp.alt = command_cond_queue.alt; set_next_WP(&temp); } static void do_within_distance() { condition_value = command_cond_queue.lat * 100; } static void do_yaw() { // get final angle, 1 = Relative, 0 = Absolute if( command_cond_queue.lng == 0 ) { // absolute angle yaw_look_at_heading = wrap_360(command_cond_queue.alt * 100); }else{ // relative angle yaw_look_at_heading = wrap_360(nav_yaw + command_cond_queue.alt * 100); } // get turn speed if( command_cond_queue.lat == 0 ) { // default to regular auto slew rate yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE; }else{ int32_t turn_rate = (wrap_180(yaw_look_at_heading - nav_yaw) / 100) / command_cond_queue.lat; yaw_look_at_heading_slew = constrain(turn_rate, 1, 360); // deg / sec } // set yaw mode set_yaw_mode(YAW_LOOK_AT_HEADING); // TO-DO: restore support for clockwise / counter clockwise rotation held in command_cond_queue.p1 // command_cond_queue.p1; // 0 = undefined, 1 = clockwise, -1 = counterclockwise } /********************************************************************************/ // Verify Condition (May) commands /********************************************************************************/ static bool verify_wait_delay() { //cliSerial->print("vwd"); if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) { //cliSerial->println("y"); condition_value = 0; return true; } //cliSerial->println("n"); return false; } static bool verify_change_alt() { //cliSerial->printf("change_alt, ca:%d, na:%d\n", (int)current_loc.alt, (int)next_WP.alt); if ((int32_t)condition_start < next_WP.alt) { // we are going higer if(current_loc.alt > next_WP.alt) { return true; } }else{ // we are going lower if(current_loc.alt < next_WP.alt) { return true; } } return false; } static bool verify_within_distance() { //cliSerial->printf("cond dist :%d\n", (int)condition_value); if (wp_distance < condition_value) { condition_value = 0; return true; } return false; } // verify_yaw - return true if we have reached the desired heading static bool verify_yaw() { if( labs(wrap_180(ahrs.yaw_sensor-yaw_look_at_heading)) <= 200 ) { return true; }else{ return false; } } // verify_nav_roi - verifies that actions required by MAV_CMD_NAV_ROI have completed // we assume the camera command has been successfully implemented by the do_nav_roi command // so all we need to check is whether we needed to yaw the copter (due to the mount type) and // whether that yaw has completed // TO-DO: add support for other features of MAV_NAV_ROI including pointing at a given waypoint static bool verify_nav_roi() { #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if( camera_mount.get_mount_type() != AP_Mount::k_pan_tilt && camera_mount.get_mount_type() != AP_Mount::k_pan_tilt_roll ) { // ensure yaw has gotten to within 2 degrees of the target if( labs(wrap_180(ahrs.yaw_sensor-yaw_look_at_WP_bearing)) <= 200 ) { return true; }else{ return false; } }else{ // if no rotation required, assume the camera instruction was implemented immediately return true; } #else // if we have no camera mount simply check we've reached the desired yaw // ensure yaw has gotten to within 2 degrees of the target if( labs(wrap_180(ahrs.yaw_sensor-yaw_look_at_WP_bearing)) <= 200 ) { return true; }else{ return false; } #endif } /********************************************************************************/ // Do (Now) commands /********************************************************************************/ static void do_change_speed() { g.waypoint_speed_max = command_cond_queue.p1 * 100; } static void do_jump() { // Used to track the state of the jump command in Mission scripting // -10 is a value that means the register is unused // when in use, it contains the current remaining jumps static int8_t jump = -10; // used to track loops in jump command //cliSerial->printf("do Jump: %d\n", jump); if(jump == -10) { //cliSerial->printf("Fresh Jump\n"); // we use a locally stored index for jump jump = command_cond_queue.lat; } //cliSerial->printf("Jumps left: %d\n",jump); if(jump > 0) { //cliSerial->printf("Do Jump to %d\n",command_cond_queue.p1); jump--; change_command(command_cond_queue.p1); } else if (jump == 0) { //cliSerial->printf("Did last jump\n"); // we're done, move along jump = -11; } else if (jump == -1) { //cliSerial->printf("jumpForever\n"); // repeat forever change_command(command_cond_queue.p1); } } static void do_set_home() { if(command_cond_queue.p1 == 1) { init_home(); } else { home.id = MAV_CMD_NAV_WAYPOINT; home.lng = command_cond_queue.lng; // Lon * 10**7 home.lat = command_cond_queue.lat; // Lat * 10**7 home.alt = 0; //home_is_set = true; set_home_is_set(true); } } static void do_set_servo() { uint8_t channel_num = 0xff; switch( command_cond_queue.p1 ) { case 1: channel_num = CH_1; break; case 2: channel_num = CH_2; break; case 3: channel_num = CH_3; break; case 4: channel_num = CH_4; break; case 5: channel_num = CH_5; break; case 6: channel_num = CH_6; break; case 7: channel_num = CH_7; break; case 8: channel_num = CH_8; break; case 9: // not used break; case 10: channel_num = CH_10; break; case 11: channel_num = CH_11; break; } // send output to channel if (channel_num != 0xff) { APM_RC.enable_out(channel_num); APM_RC.OutputCh(channel_num, command_cond_queue.alt); } } static void do_set_relay() { if (command_cond_queue.p1 == 1) { relay.on(); } else if (command_cond_queue.p1 == 0) { relay.off(); }else{ relay.toggle(); } } static void do_repeat_servo() { event_id = command_cond_queue.p1 - 1; if(command_cond_queue.p1 >= CH_5 + 1 && command_cond_queue.p1 <= CH_8 + 1) { event_timer = 0; event_value = command_cond_queue.alt; event_repeat = command_cond_queue.lat * 2; event_delay = command_cond_queue.lng * 500.0; // /2 (half cycle time) * 1000 (convert to milliseconds) switch(command_cond_queue.p1) { case CH_5: event_undo_value = g.rc_5.radio_trim; break; case CH_6: event_undo_value = g.rc_6.radio_trim; break; case CH_7: event_undo_value = g.rc_7.radio_trim; break; case CH_8: event_undo_value = g.rc_8.radio_trim; break; } update_events(); } } static void do_repeat_relay() { event_id = RELAY_TOGGLE; event_timer = 0; event_delay = command_cond_queue.lat * 500.0; // /2 (half cycle time) * 1000 (convert to milliseconds) event_repeat = command_cond_queue.alt * 2; update_events(); } // do_nav_roi - starts actions required by MAV_CMD_NAV_ROI // this involves either moving the camera to point at the ROI (region of interest) // and possibly rotating the copter to point at the ROI if our mount type does not support a yaw feature // Note: the ROI should already be in the command_nav_queue global variable // TO-DO: add support for other features of MAV_NAV_ROI including pointing at a given waypoint static void do_nav_roi() { #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if( camera_mount.get_mount_type() != AP_Mount::k_pan_tilt && camera_mount.get_mount_type() != AP_Mount::k_pan_tilt_roll ) { yaw_look_at_WP = command_nav_queue; set_yaw_mode(YAW_LOOK_AT_LOCATION); } // send the command to the camera mount camera_mount.set_roi_cmd(&command_nav_queue); // TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below) // 0: do nothing // 1: point at next waypoint // 2: point at a waypoint taken from WP# parameter (2nd parameter?) // 3: point at a location given by alt, lon, lat parameters // 4: point at a target given a target id (can't be implmented) #else // if we have no camera mount aim the quad at the location yaw_look_at_WP = command_nav_queue; set_yaw_mode(YAW_LOOK_AT_LOCATION); #endif } // do_take_picture - take a picture with the camera library static void do_take_picture() { #if CAMERA == ENABLED g.camera.trigger_pic(); if (g.log_bitmask & MASK_LOG_CAMERA) { Log_Write_Camera(); } #endif }