#include "Plane.h" #if LOGGING_ENABLED == ENABLED // Write an attitude packet void Plane::Log_Write_Attitude(void) { Vector3f targets; // Package up the targets into a vector for commonality with Copter usage of Log_Wrote_Attitude targets.x = nav_roll_cd; targets.y = nav_pitch_cd; targets.z = 0; //Plane does not have the concept of navyaw. This is a placeholder. #if HAL_QUADPLANE_ENABLED if (quadplane.show_vtol_view()) { // we need the attitude targets from the AC_AttitudeControl controller, as they // account for the acceleration limits. // Also, for bodyframe roll input types, _attitude_target_euler_angle is not maintained // since Euler angles are not used and it is a waste of cpu to compute them at the loop rate. // Get them from the quaternion instead: quadplane.attitude_control->get_attitude_target_quat().to_euler(targets.x, targets.y, targets.z); targets *= degrees(100.0f); quadplane.ahrs_view->Write_AttitudeView(targets); } else #endif { ahrs.Write_Attitude(targets); } #if HAL_QUADPLANE_ENABLED if (AP_HAL::millis() - quadplane.last_att_control_ms < 100) { // log quadplane PIDs separately from fixed wing PIDs logger.Write_PID(LOG_PIQR_MSG, quadplane.attitude_control->get_rate_roll_pid().get_pid_info()); logger.Write_PID(LOG_PIQP_MSG, quadplane.attitude_control->get_rate_pitch_pid().get_pid_info()); logger.Write_PID(LOG_PIQY_MSG, quadplane.attitude_control->get_rate_yaw_pid().get_pid_info()); logger.Write_PID(LOG_PIQA_MSG, quadplane.pos_control->get_accel_z_pid().get_pid_info() ); } if (quadplane.in_vtol_mode() && quadplane.pos_control->is_active_xy()) { logger.Write_PID(LOG_PIDN_MSG, quadplane.pos_control->get_vel_xy_pid().get_pid_info_x()); logger.Write_PID(LOG_PIDE_MSG, quadplane.pos_control->get_vel_xy_pid().get_pid_info_y()); } #endif logger.Write_PID(LOG_PIDR_MSG, rollController.get_pid_info()); logger.Write_PID(LOG_PIDP_MSG, pitchController.get_pid_info()); if (yawController.enabled()) { logger.Write_PID(LOG_PIDY_MSG, yawController.get_pid_info()); } if (steerController.active()) { logger.Write_PID(LOG_PIDS_MSG, steerController.get_pid_info()); } AP::ahrs().Log_Write(); } // do fast logging for plane void Plane::Log_Write_FullRate(void) { // MASK_LOG_ATTITUDE_FULLRATE logs at 400Hz, MASK_LOG_ATTITUDE_FAST at 25Hz, MASK_LOG_ATTIUDE_MED logs at 10Hz // highest rate selected wins if (should_log(MASK_LOG_ATTITUDE_FULLRATE)) { Log_Write_Attitude(); } if (should_log(MASK_LOG_NOTCH_FULLRATE)) { AP::ins().write_notch_log_messages(); } } struct PACKED log_Control_Tuning { LOG_PACKET_HEADER; uint64_t time_us; int16_t nav_roll_cd; int16_t roll; int16_t nav_pitch_cd; int16_t pitch; float throttle_out; float rudder_out; float throttle_dem; float airspeed_estimate; float synthetic_airspeed; float EAS2TAS; int32_t groundspeed_undershoot; }; // Write a control tuning packet. Total length : 22 bytes void Plane::Log_Write_Control_Tuning() { float est_airspeed = 0; ahrs.airspeed_estimate(est_airspeed); float synthetic_airspeed; if (!ahrs.synthetic_airspeed(synthetic_airspeed)) { synthetic_airspeed = logger.quiet_nan(); } struct log_Control_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_CTUN_MSG), time_us : AP_HAL::micros64(), nav_roll_cd : (int16_t)nav_roll_cd, roll : (int16_t)ahrs.roll_sensor, nav_pitch_cd : (int16_t)nav_pitch_cd, pitch : (int16_t)ahrs.pitch_sensor, throttle_out : SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), rudder_out : SRV_Channels::get_output_scaled(SRV_Channel::k_rudder), throttle_dem : TECS_controller.get_throttle_demand(), airspeed_estimate : est_airspeed, synthetic_airspeed : synthetic_airspeed, EAS2TAS : ahrs.get_EAS2TAS(), groundspeed_undershoot : groundspeed_undershoot, }; logger.WriteBlock(&pkt, sizeof(pkt)); } #if OFFBOARD_GUIDED == ENABLED struct PACKED log_OFG_Guided { LOG_PACKET_HEADER; uint64_t time_us; float target_airspeed_cm; float target_airspeed_accel; float target_alt; float target_alt_accel; uint8_t target_alt_frame; float target_heading; float target_heading_limit; }; // Write a OFG Guided packet. void Plane::Log_Write_OFG_Guided() { struct log_OFG_Guided pkt = { LOG_PACKET_HEADER_INIT(LOG_OFG_MSG), time_us : AP_HAL::micros64(), target_airspeed_cm : (float)guided_state.target_airspeed_cm*(float)0.01, target_airspeed_accel : guided_state.target_airspeed_accel, target_alt : guided_state.target_alt, target_alt_accel : guided_state.target_alt_accel, target_alt_frame : guided_state.target_alt_frame, target_heading : guided_state.target_heading, target_heading_limit : guided_state.target_heading_accel_limit }; logger.WriteBlock(&pkt, sizeof(pkt)); } #endif struct PACKED log_Nav_Tuning { LOG_PACKET_HEADER; uint64_t time_us; float wp_distance; int16_t target_bearing_cd; int16_t nav_bearing_cd; int16_t altitude_error_cm; float xtrack_error; float xtrack_error_i; float airspeed_error; int32_t target_lat; int32_t target_lng; int32_t target_alt_wp; int32_t target_alt_tecs; int32_t target_airspeed; }; // Write a navigation tuning packet void Plane::Log_Write_Nav_Tuning() { struct log_Nav_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG), time_us : AP_HAL::micros64(), wp_distance : auto_state.wp_distance, target_bearing_cd : (int16_t)nav_controller->target_bearing_cd(), nav_bearing_cd : (int16_t)nav_controller->nav_bearing_cd(), altitude_error_cm : (int16_t)altitude_error_cm, xtrack_error : nav_controller->crosstrack_error(), xtrack_error_i : nav_controller->crosstrack_error_integrator(), airspeed_error : airspeed_error, target_lat : next_WP_loc.lat, target_lng : next_WP_loc.lng, target_alt_wp : next_WP_loc.alt, target_alt_tecs : tecs_target_alt_cm, target_airspeed : target_airspeed_cm, }; logger.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Status { LOG_PACKET_HEADER; uint64_t time_us; uint8_t is_flying; float is_flying_probability; uint8_t armed; uint8_t safety; bool is_crashed; bool is_still; uint8_t stage; bool impact; }; void Plane::Log_Write_Status() { struct log_Status pkt = { LOG_PACKET_HEADER_INIT(LOG_STATUS_MSG) ,time_us : AP_HAL::micros64() ,is_flying : is_flying() ,is_flying_probability : isFlyingProbability ,armed : hal.util->get_soft_armed() ,safety : static_cast(hal.util->safety_switch_state()) ,is_crashed : crash_state.is_crashed ,is_still : AP::ins().is_still() ,stage : static_cast(flight_stage) ,impact : crash_state.impact_detected }; logger.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_AETR { LOG_PACKET_HEADER; uint64_t time_us; float aileron; float elevator; float throttle; float rudder; float flap; float speed_scaler; }; void Plane::Log_Write_AETR() { struct log_AETR pkt = { LOG_PACKET_HEADER_INIT(LOG_AETR_MSG) ,time_us : AP_HAL::micros64() ,aileron : SRV_Channels::get_output_scaled(SRV_Channel::k_aileron) ,elevator : SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) ,throttle : SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) ,rudder : SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) ,flap : SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto) ,speed_scaler : get_speed_scaler(), }; logger.WriteBlock(&pkt, sizeof(pkt)); } void Plane::Log_Write_RC(void) { logger.Write_RCIN(); logger.Write_RCOUT(); if (rssi.enabled()) { logger.Write_RSSI(); } Log_Write_AETR(); } void Plane::Log_Write_Guided(void) { #if OFFBOARD_GUIDED == ENABLED if (control_mode != &mode_guided) { return; } if (guided_state.target_heading_time_ms != 0) { logger.Write_PID(LOG_PIDG_MSG, g2.guidedHeading.get_pid_info()); } if ( is_positive(guided_state.target_alt) || is_positive(guided_state.target_airspeed_cm) ) { Log_Write_OFG_Guided(); } #endif // OFFBOARD_GUIDED == ENABLED } // incoming-to-vehicle mavlink COMMAND_INT can be logged struct PACKED log_CMDI { LOG_PACKET_HEADER; uint64_t TimeUS; uint16_t CId; uint8_t TSys; uint8_t TCmp; uint8_t cur; uint8_t cont; float Prm1; float Prm2; float Prm3; float Prm4; int32_t Lat; int32_t Lng; float Alt; uint8_t F; }; // type and unit information can be found in // libraries/AP_Logger/Logstructure.h; search for "log_Units" for // units and "Format characters" for field type information const struct LogStructure Plane::log_structure[] = { LOG_COMMON_STRUCTURES, // @LoggerMessage: CTUN // @Description: Control Tuning information // @Field: TimeUS: Time since system startup // @Field: NavRoll: desired roll // @Field: Roll: achieved roll // @Field: NavPitch: desired pitch // @Field: Pitch: achieved pitch // @Field: ThO: scaled output throttle // @Field: RdrOut: scaled output rudder // @Field: ThD: demanded speed-height-controller throttle // @Field: As: airspeed estimate (or measurement if airspeed sensor healthy and ARSPD_USE>0) // @Field: SAs: synthetic airspeed measurement derived from non-airspeed sensors, NaN if not available // @Field: E2T: equivalent to true airspeed ratio // @Field: GU: groundspeed undershoot when flying with minimum groundspeed { LOG_CTUN_MSG, sizeof(log_Control_Tuning), "CTUN", "Qccccffffffi", "TimeUS,NavRoll,Roll,NavPitch,Pitch,ThO,RdrOut,ThD,As,SAs,E2T,GU", "sdddd---nn-n", "FBBBB---00-B" , true }, // @LoggerMessage: NTUN // @Description: Navigation Tuning information - e.g. vehicle destination // @Field: TimeUS: Time since system startup // @Field: Dist: distance to the current navigation waypoint // @Field: TBrg: bearing to the current navigation waypoint // @Field: NavBrg: the vehicle's desired heading // @Field: AltE: difference between current vehicle height and target height // @Field: XT: the vehicle's current distance from the current travel segment // @Field: XTi: integration of the vehicle's crosstrack error // @Field: AsE: difference between vehicle's airspeed and desired airspeed // @Field: TLat: target latitude // @Field: TLng: target longitude // @Field: TAW: target altitude WP // @Field: TAT: target altitude TECS // @Field: TAsp: target airspeed { LOG_NTUN_MSG, sizeof(log_Nav_Tuning), "NTUN", "QfcccfffLLeee", "TimeUS,Dist,TBrg,NavBrg,AltE,XT,XTi,AsE,TLat,TLng,TAW,TAT,TAsp", "smddmmmnDUmmn", "F0BBB0B0GG000" , true }, // @LoggerMessage: ATRP // @Description: Plane AutoTune // @Vehicles: Plane // @Field: TimeUS: Time since system startup // @Field: Axis: tuning axis // @Field: State: tuning state // @Field: Sur: control surface deflection // @Field: PSlew: P slew rate // @Field: DSlew: D slew rate // @Field: FF0: FF value single sample // @Field: FF: FF value // @Field: P: P value // @Field: I: I value // @Field: D: D value // @Field: Action: action taken // @Field: RMAX: Rate maximum // @Field: TAU: time constant { LOG_ATRP_MSG, sizeof(AP_AutoTune::log_ATRP), "ATRP", "QBBffffffffBff", "TimeUS,Axis,State,Sur,PSlew,DSlew,FF0,FF,P,I,D,Action,RMAX,TAU", "s#-dkk------ks", "F--00000000-00" , true }, // @LoggerMessage: STAT // @Description: Current status of the aircraft // @Field: TimeUS: Time since system startup // @Field: isFlying: True if aircraft is probably flying // @Field: isFlyProb: Probabilty that the aircraft is flying // @Field: Armed: Arm status of the aircraft // @Field: Safety: State of the safety switch // @Field: Crash: True if crash is detected // @Field: Still: True when vehicle is not moving in any axis // @Field: Stage: Current stage of the flight // @Field: Hit: True if impact is detected { LOG_STATUS_MSG, sizeof(log_Status), "STAT", "QBfBBBBBB", "TimeUS,isFlying,isFlyProb,Armed,Safety,Crash,Still,Stage,Hit", "s--------", "F--------" , true }, // @LoggerMessage: QTUN // @Description: QuadPlane vertical tuning message // @Field: TimeUS: Time since system startup // @Field: ThI: throttle input // @Field: ABst: angle boost // @Field: ThO: throttle output // @Field: ThH: calculated hover throttle // @Field: DAlt: desired altitude // @Field: Alt: achieved altitude // @Field: BAlt: barometric altitude // @Field: DCRt: desired climb rate // @Field: CRt: climb rate // @Field: TMix: transition throttle mix value // @Field: Sscl: speed scalar for tailsitter control surfaces // @Field: Trn: Transition state: 0-AirspeedWait,1-Timer,2-Done / TailSitter: 0-FW Wait,1-VTOL Wait,2-Done // @Field: Ast: Q assist active #if HAL_QUADPLANE_ENABLED { LOG_QTUN_MSG, sizeof(QuadPlane::log_QControl_Tuning), "QTUN", "QffffffeccffBB", "TimeUS,ThI,ABst,ThO,ThH,DAlt,Alt,BAlt,DCRt,CRt,TMix,Sscl,Trn,Ast", "s----mmmnn----", "F----00000-0--" , true }, #endif // @LoggerMessage: PIQR,PIQP,PIQY,PIQA // @Description: QuadPlane Proportional/Integral/Derivative gain values for Roll/Pitch/Yaw/Z // @Field: TimeUS: Time since system startup // @Field: Tar: desired value // @Field: Act: achieved value // @Field: Err: error between target and achieved // @Field: P: proportional part of PID // @Field: I: integral part of PID // @Field: D: derivative part of PID // @Field: FF: controller feed-forward portion of response // @Field: Dmod: scaler applied to D gain to reduce limit cycling // @Field: SRate: slew rate // @Field: Limit: 1 if I term is limited due to output saturation { LOG_PIQR_MSG, sizeof(log_PID), "PIQR", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true }, { LOG_PIQP_MSG, sizeof(log_PID), "PIQP", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true }, { LOG_PIQY_MSG, sizeof(log_PID), "PIQY", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true }, { LOG_PIQA_MSG, sizeof(log_PID), "PIQA", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true }, // @LoggerMessage: PIDG // @Description: Plane Proportional/Integral/Derivative gain values for Heading when using COMMAND_INT control. // @Field: TimeUS: Time since system startup // @Field: Tar: desired value // @Field: Act: achieved value // @Field: Err: error between target and achieved // @Field: P: proportional part of PID // @Field: I: integral part of PID // @Field: D: derivative part of PID // @Field: FF: controller feed-forward portion of response // @Field: Dmod: scaler applied to D gain to reduce limit cycling // @Field: SRate: slew rate // @Field: Limit: 1 if I term is limited due to output saturation { LOG_PIDG_MSG, sizeof(log_PID), "PIDG", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true }, // @LoggerMessage: AETR // @Description: Normalised pre-mixer control surface outputs // @Field: TimeUS: Time since system startup // @Field: Ail: Pre-mixer value for aileron output (between -4500 and 4500) // @Field: Elev: Pre-mixer value for elevator output (between -4500 and 4500) // @Field: Thr: Pre-mixer value for throttle output (between -100 and 100) // @Field: Rudd: Pre-mixer value for rudder output (between -4500 and 4500) // @Field: Flap: Pre-mixer value for flaps output (between 0 and 100) // @Field: SS: Surface movement / airspeed scaling value { LOG_AETR_MSG, sizeof(log_AETR), "AETR", "Qffffff", "TimeUS,Ail,Elev,Thr,Rudd,Flap,SS", "s------", "F------" , true }, #if OFFBOARD_GUIDED == ENABLED // @LoggerMessage: OFG // @Description: OFfboard-Guided - an advanced version of GUIDED for companion computers that includes rate/s. // @Field: TimeUS: Time since system startup // @Field: Arsp: target airspeed cm // @Field: ArspA: target airspeed accel // @Field: Alt: target alt // @Field: AltA: target alt accel // @Field: AltF: target alt frame // @Field: Hdg: target heading // @Field: HdgA: target heading lim { LOG_OFG_MSG, sizeof(log_OFG_Guided), "OFG", "QffffBff", "TimeUS,Arsp,ArspA,Alt,AltA,AltF,Hdg,HdgA", "s-------", "F-------" , true }, #endif }; void Plane::Log_Write_Vehicle_Startup_Messages() { // only 200(?) bytes are guaranteed by AP_Logger #if HAL_QUADPLANE_ENABLED if (quadplane.initialised) { char frame_and_type_string[30]; quadplane.motors->get_frame_and_type_string(frame_and_type_string, ARRAY_SIZE(frame_and_type_string)); logger.Write_MessageF("QuadPlane %s", frame_and_type_string); } #endif logger.Write_Mode(control_mode->mode_number(), control_mode_reason); ahrs.Log_Write_Home_And_Origin(); gps.Write_AP_Logger_Log_Startup_messages(); } /* initialise logging subsystem */ void Plane::log_init(void) { logger.Init(log_structure, ARRAY_SIZE(log_structure)); } #else // LOGGING_ENABLED void Plane::Log_Write_Attitude(void) {} void Plane::Log_Write_Fast(void) {} void Plane::Log_Write_Control_Tuning() {} void Plane::Log_Write_OFG_Guided() {} void Plane::Log_Write_Nav_Tuning() {} void Plane::Log_Write_Status() {} void Plane::Log_Write_Guided(void) {} void Plane::Log_Write_RC(void) {} void Plane::Log_Write_Vehicle_Startup_Messages() {} void Plane::log_init(void) {} #endif // LOGGING_ENABLED