#include "Scheduler.h" #include #include #include #include #include #include #include #include #include #include #include "RCInput.h" #include "RPIOUARTDriver.h" #include "SPIUARTDriver.h" #include "Storage.h" #include "UARTDriver.h" #include "Util.h" #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_QFLIGHT #include #include #include #include #endif using namespace Linux; extern const AP_HAL::HAL& hal; #define APM_LINUX_TIMER_PRIORITY 15 #define APM_LINUX_UART_PRIORITY 14 #define APM_LINUX_RCIN_PRIORITY 13 #define APM_LINUX_MAIN_PRIORITY 12 #define APM_LINUX_TONEALARM_PRIORITY 11 #define APM_LINUX_IO_PRIORITY 10 #define APM_LINUX_TIMER_RATE 1000 #define APM_LINUX_UART_RATE 100 #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DARK || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_URUS || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI #define APM_LINUX_RCIN_RATE 2000 #define APM_LINUX_TONEALARM_RATE 100 #define APM_LINUX_IO_RATE 50 #else #define APM_LINUX_RCIN_RATE 100 #define APM_LINUX_TONEALARM_RATE 100 #define APM_LINUX_IO_RATE 50 #endif #define SCHED_THREAD(name_, UPPER_NAME_) \ { \ .name = "ap-" #name_, \ .thread = &_##name_##_thread, \ .policy = SCHED_FIFO, \ .prio = APM_LINUX_##UPPER_NAME_##_PRIORITY, \ .rate = APM_LINUX_##UPPER_NAME_##_RATE, \ } Scheduler::Scheduler() { } void Scheduler::init() { int ret; const struct sched_table { const char *name; SchedulerThread *thread; int policy; int prio; uint32_t rate; } sched_table[] = { SCHED_THREAD(timer, TIMER), SCHED_THREAD(uart, UART), SCHED_THREAD(rcin, RCIN), SCHED_THREAD(tonealarm, TONEALARM), SCHED_THREAD(io, IO), }; #if !APM_BUILD_TYPE(APM_BUILD_Replay) // we don't run Replay in real-time... mlockall(MCL_CURRENT|MCL_FUTURE); struct sched_param param = { .sched_priority = APM_LINUX_MAIN_PRIORITY }; if (sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) { AP_HAL::panic("Scheduler: failed to set scheduling parameters: %s", strerror(errno)); } #endif /* set barrier to N + 1 threads: worker threads + main */ unsigned n_threads = ARRAY_SIZE(sched_table) + 1; ret = pthread_barrier_init(&_initialized_barrier, nullptr, n_threads); if (ret) { AP_HAL::panic("Scheduler: Failed to initialise barrier object: %s", strerror(ret)); } for (size_t i = 0; i < ARRAY_SIZE(sched_table); i++) { const struct sched_table *t = &sched_table[i]; t->thread->set_rate(t->rate); t->thread->set_stack_size(1024 * 1024); t->thread->start(t->name, t->policy, t->prio); } #if defined(DEBUG_STACK) && DEBUG_STACK register_timer_process(FUNCTOR_BIND_MEMBER(&Scheduler::_debug_stack, void)); #endif } void Scheduler::_debug_stack() { uint64_t now = AP_HAL::millis64(); if (now - _last_stack_debug_msec > 5000) { fprintf(stderr, "Stack Usage:\n" "\ttimer = %zu\n" "\tio = %zu\n" "\trcin = %zu\n" "\tuart = %zu\n" "\ttone = %zu\n", _timer_thread.get_stack_usage(), _io_thread.get_stack_usage(), _rcin_thread.get_stack_usage(), _uart_thread.get_stack_usage(), _tonealarm_thread.get_stack_usage()); _last_stack_debug_msec = now; } } void Scheduler::microsleep(uint32_t usec) { struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = usec*1000UL; while (nanosleep(&ts, &ts) == -1 && errno == EINTR) ; } void Scheduler::delay(uint16_t ms) { if (_stopped_clock_usec) { return; } uint64_t start = AP_HAL::millis64(); while ((AP_HAL::millis64() - start) < ms) { // this yields the CPU to other apps microsleep(1000); if (_min_delay_cb_ms <= ms) { if (_delay_cb) { _delay_cb(); } } } } void Scheduler::delay_microseconds(uint16_t us) { if (_stopped_clock_usec) { return; } microsleep(us); } void Scheduler::register_delay_callback(AP_HAL::Proc proc, uint16_t min_time_ms) { _delay_cb = proc; _min_delay_cb_ms = min_time_ms; } void Scheduler::register_timer_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < LINUX_SCHEDULER_MAX_TIMER_PROCS) { _timer_proc[_num_timer_procs] = proc; _num_timer_procs++; } else { hal.console->printf("Out of timer processes\n"); } } bool Scheduler::register_timer_process(AP_HAL::MemberProc proc, uint8_t freq_div) { #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO if (freq_div > 1) { return _register_timesliced_proc(proc, freq_div); } /* fallback to normal timer process */ #endif register_timer_process(proc); return false; } bool Scheduler::_register_timesliced_proc(AP_HAL::MemberProc proc, uint8_t freq_div) { unsigned int i, j; uint8_t distance, min_distance, best_distance; uint8_t best_timeslot; if (_num_timesliced_procs > LINUX_SCHEDULER_MAX_TIMESLICED_PROCS) { hal.console->printf("Out of timesliced processes\n"); return false; } /* if max_freq_div increases, update the timeslots accordingly */ if (freq_div > _max_freq_div) { for (i = 0; i < _num_timesliced_procs; i++) { _timesliced_proc[i].timeslot = _timesliced_proc[i].timeslot / _max_freq_div * freq_div; } _max_freq_div = freq_div; } best_distance = 0; best_timeslot = 0; /* Look for the timeslot that maximizes the min distance with other timeslots */ for (i = 0; i < _max_freq_div; i++) { min_distance = _max_freq_div; for (j = 0; j < _num_timesliced_procs; j++) { distance = std::min(i - _timesliced_proc[j].timeslot, _max_freq_div + _timesliced_proc[j].timeslot - i); if (distance < min_distance) { min_distance = distance; if (min_distance == 0) { break; } } } if (min_distance > best_distance) { best_distance = min_distance; best_timeslot = i; } } _timesliced_proc[_num_timesliced_procs].proc = proc; _timesliced_proc[_num_timesliced_procs].timeslot = best_timeslot; _timesliced_proc[_num_timesliced_procs].freq_div = freq_div; _num_timesliced_procs++; return true; } void Scheduler::register_io_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_io_procs; i++) { if (_io_proc[i] == proc) { return; } } if (_num_io_procs < LINUX_SCHEDULER_MAX_IO_PROCS) { _io_proc[_num_io_procs] = proc; _num_io_procs++; } else { hal.console->printf("Out of IO processes\n"); } } void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) { _failsafe = failsafe; } void Scheduler::suspend_timer_procs() { if (!_timer_semaphore.take(0)) { printf("Failed to take timer semaphore\n"); } } void Scheduler::resume_timer_procs() { _timer_semaphore.give(); } void Scheduler::_timer_task() { int i; if (_in_timer_proc) { return; } _in_timer_proc = true; if (!_timer_semaphore.take(0)) { printf("Failed to take timer semaphore in %s\n", __PRETTY_FUNCTION__); } // now call the timer based drivers for (i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i]) { _timer_proc[i](); } } #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT //SPI UART use SPI if (!((RPIOUARTDriver *)hal.uartC)->isExternal()) { ((RPIOUARTDriver *)hal.uartC)->_timer_tick(); } #endif for (i = 0; i < _num_timesliced_procs; i++) { if ((_timeslices_count + _timesliced_proc[i].timeslot) % _timesliced_proc[i].freq_div == 0) { _timesliced_proc[i].proc(); } } if (_max_freq_div != 0) { _timeslices_count++; if (_timeslices_count == _max_freq_div) { _timeslices_count = 0; } } _timer_semaphore.give(); // and the failsafe, if one is setup if (_failsafe != nullptr) { _failsafe(); } _in_timer_proc = false; #if HAL_LINUX_UARTS_ON_TIMER_THREAD /* some boards require that UART calls happen on the same thread as other calls of the same time. This impacts the QFLIGHT calls where UART output is an RPC call to the DSPs */ _run_uarts(); RCInput::from(hal.rcin)->_timer_tick(); #endif } void Scheduler::_run_io(void) { if (!_io_semaphore.take(0)) { return; } // now call the IO based drivers for (int i = 0; i < _num_io_procs; i++) { if (_io_proc[i]) { _io_proc[i](); } } _io_semaphore.give(); } /* run timers for all UARTs */ void Scheduler::_run_uarts() { // process any pending serial bytes UARTDriver::from(hal.uartA)->_timer_tick(); UARTDriver::from(hal.uartB)->_timer_tick(); #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT //SPI UART not use SPI if (RPIOUARTDriver::from(hal.uartC)->isExternal()) { RPIOUARTDriver::from(hal.uartC)->_timer_tick(); } #else UARTDriver::from(hal.uartC)->_timer_tick(); #endif UARTDriver::from(hal.uartD)->_timer_tick(); UARTDriver::from(hal.uartE)->_timer_tick(); UARTDriver::from(hal.uartF)->_timer_tick(); } void Scheduler::_rcin_task() { #if !HAL_LINUX_UARTS_ON_TIMER_THREAD RCInput::from(hal.rcin)->_timer_tick(); #endif } void Scheduler::_uart_task() { #if !HAL_LINUX_UARTS_ON_TIMER_THREAD _run_uarts(); #endif } void Scheduler::_tonealarm_task() { // process tone command Util::from(hal.util)->_toneAlarm_timer_tick(); } void Scheduler::_io_task() { // process any pending storage writes Storage::from(hal.storage)->_timer_tick(); // run registered IO processes _run_io(); } bool Scheduler::in_timerprocess() { return _in_timer_proc; } void Scheduler::_wait_all_threads() { int r = pthread_barrier_wait(&_initialized_barrier); if (r == PTHREAD_BARRIER_SERIAL_THREAD) { pthread_barrier_destroy(&_initialized_barrier); } } void Scheduler::system_initialized() { if (_initialized) { AP_HAL::panic("PANIC: scheduler::system_initialized called more than once"); } _initialized = true; _wait_all_threads(); } void Scheduler::reboot(bool hold_in_bootloader) { exit(1); } void Scheduler::stop_clock(uint64_t time_usec) { if (time_usec >= _stopped_clock_usec) { _stopped_clock_usec = time_usec; _run_io(); } } bool Scheduler::SchedulerThread::_run() { #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_QFLIGHT if (_sched._timer_thread.is_current_thread()) { /* make rpcmem initialization on timer thread */ printf("Initialising rpcmem\n"); rpcmem_init(); } #endif _sched._wait_all_threads(); return PeriodicThread::_run(); } void Scheduler::teardown() { _timer_thread.stop(); _io_thread.stop(); _rcin_thread.stop(); _uart_thread.stop(); _tonealarm_thread.stop(); _timer_thread.join(); _io_thread.join(); _rcin_thread.join(); _uart_thread.join(); _tonealarm_thread.join(); }