/// @file AC_HELI_PID.cpp /// @brief Generic PID algorithm #include #include "AC_HELI_PID.h" const AP_Param::GroupInfo AC_HELI_PID::var_info[] = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, AC_HELI_PID, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, AC_HELI_PID, _ki, 0), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 2, AC_HELI_PID, _kd, 0), // 3 was for uint16 IMAX // @Param: FF // @DisplayName: FF FeedForward Gain // @Description: FF Gain which produces an output value that is proportional to the demanded input AP_GROUPINFO("FF", 4, AC_HELI_PID, _kff, 0), // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 5, AC_HELI_PID, _kimax, 0), // 6 was for float FILT // @Param: ILMI // @DisplayName: I-term Leak Minimum // @Description: Point below which I-term will not leak down // @Range: 0 1 // @User: Advanced AP_GROUPINFO("ILMI", 7, AC_HELI_PID, _leak_min, AC_PID_LEAK_MIN), // 8 was for float AFF // @Param: FLTT // @DisplayName: PID Target filter frequency in Hz // @Description: Target filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTT", 9, AC_HELI_PID, _filt_T_hz, AC_PID_TFILT_HZ_DEFAULT), // @Param: FLTE // @DisplayName: PID Error filter frequency in Hz // @Description: Error filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTE", 10, AC_HELI_PID, _filt_E_hz, AC_PID_EFILT_HZ_DEFAULT), // @Param: FLTD // @DisplayName: PID D term filter frequency in Hz // @Description: Derivative filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTD", 11, AC_HELI_PID, _filt_D_hz, AC_PID_DFILT_HZ_DEFAULT), // @Param: SMAX // @DisplayName: Slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced AP_GROUPINFO("SMAX", 12, AC_HELI_PID, _slew_rate_max, 0), // @Param: PDMX // @DisplayName: PD sum maximum // @Description: The maximum/minimum value that the sum of the P and D term can output // @User: Advanced AP_GROUPINFO("PDMX", 13, AC_HELI_PID, _kpdmax, 0), // @Param: D_FF // @DisplayName: PID Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced AP_GROUPINFO("D_FF", 14, AC_HELI_PID, _kdff, 0), #if AP_FILTER_ENABLED // @Param: NTF // @DisplayName: PID Target notch filter index // @Description: PID Target notch filter index // @Range: 1 8 // @User: Advanced AP_GROUPINFO("NTF", 15, AC_HELI_PID, _notch_T_filter, 0), // @Param: NEF // @DisplayName: PID Error notch filter index // @Description: PID Error notch filter index // @Range: 1 8 // @User: Advanced AP_GROUPINFO("NEF", 16, AC_HELI_PID, _notch_E_filter, 0), #endif AP_GROUPEND }; /// Constructor for PID AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dff_val) : AC_PID(initial_p, initial_i, initial_d, initial_ff, initial_imax, initial_filt_T_hz, initial_filt_E_hz, initial_filt_D_hz, dff_val) { _last_requested_rate = 0; } // This is an integrator which tends to decay to zero naturally // if the error is zero. void AC_HELI_PID::update_leaky_i(float leak_rate) { if (!is_zero(_ki)){ // integrator does not leak down below Leak Min if (_integrator > _leak_min){ _integrator -= (float)(_integrator - _leak_min) * leak_rate; } else if (_integrator < -_leak_min) { _integrator -= (float)(_integrator + _leak_min) * leak_rate; } } }