#include "Sub.h" /* * control_auto.cpp * Contains the mission, waypoint navigation and NAV_CMD item implementation * * While in the auto flight mode, navigation or do/now commands can be run. * Code in this file implements the navigation commands */ bool ModeAuto::init(bool ignore_checks) { if (!sub.position_ok() || sub.mission.num_commands() < 2) { return false; } sub.auto_mode = Auto_Loiter; // stop ROI from carrying over from previous runs of the mission // To-Do: reset the yaw as part of auto_wp_start when the previous command was not a wp command to remove the need for this special ROI check if (sub.auto_yaw_mode == AUTO_YAW_ROI) { set_auto_yaw_mode(AUTO_YAW_HOLD); } // initialise waypoint controller sub.wp_nav.wp_and_spline_init(); // clear guided limits guided_limit_clear(); // start/resume the mission (based on MIS_RESTART parameter) sub.mission.start_or_resume(); return true; } // auto_run - runs the appropriate auto controller // according to the current auto_mode void ModeAuto::run() { sub.mission.update(); // call the correct auto controller switch (sub.auto_mode) { case Auto_WP: case Auto_CircleMoveToEdge: auto_wp_run(); break; case Auto_Circle: auto_circle_run(); break; case Auto_NavGuided: #if NAV_GUIDED == ENABLED auto_nav_guided_run(); #endif break; case Auto_Loiter: auto_loiter_run(); break; case Auto_TerrainRecover: auto_terrain_recover_run(); break; } } // auto_wp_start - initialises waypoint controller to implement flying to a particular destination void ModeAuto::auto_wp_start(const Vector3f& destination) { sub.auto_mode = Auto_WP; // initialise wpnav (no need to check return status because terrain data is not used) sub.wp_nav.set_wp_destination(destination, false); // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (sub.auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_wp_start - initialises waypoint controller to implement flying to a particular destination void ModeAuto::auto_wp_start(const Location& dest_loc) { sub.auto_mode = Auto_WP; // send target to waypoint controller if (!sub.wp_nav.set_wp_destination_loc(dest_loc)) { // failure to set destination can only be because of missing terrain data sub.failsafe_terrain_on_event(); return; } // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (sub.auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_wp_run - runs the auto waypoint controller // called by auto_run at 100hz or more void ModeAuto::auto_wp_run() { // if not armed set throttle to zero and exit immediately if (!motors.armed()) { // To-Do: reset waypoint origin to current location because vehicle is probably on the ground so we don't want it lurching left or right on take-off // (of course it would be better if people just used take-off) // call attitude controller // Sub vehicles do not stabilize roll/pitch/yaw when disarmed motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control->set_throttle_out(0,true,g.throttle_filt); attitude_control->relax_attitude_controllers(); sub.wp_nav.wp_and_spline_init(); // Reset xy target return; } // process pilot's yaw input float target_yaw_rate = 0; if (!sub.failsafe.pilot_input) { // get pilot's desired yaw rate target_yaw_rate = sub.get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller // TODO logic for terrain tracking target going below fence limit // TODO implement waypoint radius individually for each waypoint based on cmd.p2 // TODO fix auto yaw heading to switch to something appropriate when mission complete and switches to loiter sub.failsafe_terrain_set_status(sub.wp_nav.update_wpnav()); /////////////////////// // update xy outputs // float lateral_out, forward_out; sub.translate_wpnav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // WP_Nav has set the vertical position control targets // run the vertical position controller and set output throttle position_control->update_z_controller(); //////////////////////////// // update attitude output // // get pilot desired lean angles float target_roll, target_pitch; sub.get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, sub.aparm.angle_max); // call attitude controller if (sub.auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch & yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate); } else { // roll, pitch from pilot, yaw heading from auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, get_auto_heading(), true); } } // auto_circle_movetoedge_start - initialise waypoint controller to move to edge of a circle with it's center at the specified location // we assume the caller has set the circle's circle with sub.circle_nav.set_center() // we assume the caller has performed all required GPS_ok checks void ModeAuto::auto_circle_movetoedge_start(const Location &circle_center, float radius_m, bool ccw_turn) { // set circle center sub.circle_nav.set_center(circle_center); // set circle radius if (!is_zero(radius_m)) { sub.circle_nav.set_radius_cm(radius_m * 100.0f); } // set circle direction by using rate float current_rate = sub.circle_nav.get_rate(); current_rate = ccw_turn ? -fabsf(current_rate) : fabsf(current_rate); sub.circle_nav.set_rate(current_rate); // check our distance from edge of circle Vector3f circle_edge_neu; sub.circle_nav.get_closest_point_on_circle(circle_edge_neu); float dist_to_edge = (inertial_nav.get_position_neu_cm() - circle_edge_neu).length(); // if more than 3m then fly to edge if (dist_to_edge > 300.0f) { // set the state to move to the edge of the circle sub.auto_mode = Auto_CircleMoveToEdge; // convert circle_edge_neu to Location Location circle_edge(circle_edge_neu, Location::AltFrame::ABOVE_ORIGIN); // convert altitude to same as command circle_edge.set_alt_cm(circle_center.alt, circle_center.get_alt_frame()); // initialise wpnav to move to edge of circle if (!sub.wp_nav.set_wp_destination_loc(circle_edge)) { // failure to set destination can only be because of missing terrain data sub.failsafe_terrain_on_event(); } // if we are outside the circle, point at the edge, otherwise hold yaw float dist_to_center = get_horizontal_distance_cm(inertial_nav.get_position_xy_cm().topostype(), sub.circle_nav.get_center().xy()); if (dist_to_center > sub.circle_nav.get_radius() && dist_to_center > 500) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } else { // vehicle is within circle so hold yaw to avoid spinning as we move to edge of circle set_auto_yaw_mode(AUTO_YAW_HOLD); } } else { auto_circle_start(); } } // auto_circle_start - initialises controller to fly a circle in AUTO flight mode // assumes that circle_nav object has already been initialised with circle center and radius void ModeAuto::auto_circle_start() { sub.auto_mode = Auto_Circle; // initialise circle controller sub.circle_nav.init(sub.circle_nav.get_center(), sub.circle_nav.center_is_terrain_alt(), sub.circle_nav.get_rate()); } // auto_circle_run - circle in AUTO flight mode // called by auto_run at 100hz or more void ModeAuto::auto_circle_run() { // call circle controller sub.failsafe_terrain_set_status(sub.circle_nav.update()); float lateral_out, forward_out; sub.translate_circle_nav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // WP_Nav has set the vertical position control targets // run the vertical position controller and set output throttle position_control->update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), sub.circle_nav.get_yaw(), true); } #if NAV_GUIDED == ENABLED // auto_nav_guided_start - hand over control to external navigation controller in AUTO mode void ModeAuto::auto_nav_guided_start() { sub.mode_guided.init(true); sub.auto_mode = Auto_NavGuided; // initialise guided start time and position as reference for limit checking sub.mode_auto.guided_limit_init_time_and_pos(); } // auto_nav_guided_run - allows control by external navigation controller // called by auto_run at 100hz or more void ModeAuto::auto_nav_guided_run() { // call regular guided flight mode run function sub.mode_guided.run(); } #endif // NAV_GUIDED // auto_loiter_start - initialises loitering in auto mode // returns success/failure because this can be called by exit_mission bool ModeAuto::auto_loiter_start() { // return failure if GPS is bad if (!sub.position_ok()) { return false; } sub.auto_mode = Auto_Loiter; // calculate stopping point Vector3f stopping_point; sub.wp_nav.get_wp_stopping_point(stopping_point); // initialise waypoint controller target to stopping point sub.wp_nav.set_wp_destination(stopping_point); // hold yaw at current heading set_auto_yaw_mode(AUTO_YAW_HOLD); return true; } // auto_loiter_run - loiter in AUTO flight mode // called by auto_run at 100hz or more void ModeAuto::auto_loiter_run() { // if not armed set throttle to zero and exit immediately if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when disarmed attitude_control->set_throttle_out(0,true,g.throttle_filt); attitude_control->relax_attitude_controllers(); sub.wp_nav.wp_and_spline_init(); // Reset xy target return; } // accept pilot input of yaw float target_yaw_rate = 0; if (!sub.failsafe.pilot_input) { target_yaw_rate = sub.get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint and z-axis position controller sub.failsafe_terrain_set_status(sub.wp_nav.update_wpnav()); /////////////////////// // update xy outputs // float lateral_out, forward_out; sub.translate_wpnav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // WP_Nav has set the vertical position control targets // run the vertical position controller and set output throttle position_control->update_z_controller(); // get pilot desired lean angles float target_roll, target_pitch; sub.get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, sub.aparm.angle_max); // roll & pitch & yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate); } // set_auto_yaw_look_at_heading - sets the yaw look at heading for auto mode void ModeAuto::set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, uint8_t relative_angle) { // get current yaw int32_t curr_yaw_target = attitude_control->get_att_target_euler_cd().z; // get final angle, 1 = Relative, 0 = Absolute if (relative_angle == 0) { // absolute angle sub.yaw_look_at_heading = wrap_360_cd(angle_deg * 100); } else { // relative angle if (direction < 0) { angle_deg = -angle_deg; } sub.yaw_look_at_heading = wrap_360_cd((angle_deg * 100 + curr_yaw_target)); } // get turn speed if (is_zero(turn_rate_dps)) { // default to regular auto slew rate sub.yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE; } else { sub.yaw_look_at_heading_slew = MIN(turn_rate_dps, AUTO_YAW_SLEW_RATE); // deg / sec } // set yaw mode set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING); // TO-DO: restore support for clockwise and counter clockwise rotation held in cmd.content.yaw.direction. 1 = clockwise, -1 = counterclockwise } // sets the desired yaw rate void ModeAuto::set_yaw_rate(float turn_rate_dps) { // set sub to desired yaw rate sub.yaw_look_at_heading_slew = MIN(turn_rate_dps, AUTO_YAW_SLEW_RATE); // deg / sec // set yaw mode set_auto_yaw_mode(AUTO_YAW_RATE); } // set_auto_yaw_roi - sets the yaw to look at roi for auto mode void ModeAuto::set_auto_yaw_roi(const Location &roi_location) { // if location is zero lat, lon and altitude turn off ROI if (roi_location.alt == 0 && roi_location.lat == 0 && roi_location.lng == 0) { // set auto yaw mode back to default assuming the active command is a waypoint command. A more sophisticated method is required to ensure we return to the proper yaw control for the active command set_auto_yaw_mode(get_default_auto_yaw_mode(false)); #if HAL_MOUNT_ENABLED // switch off the camera tracking if enabled if (sub.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { sub.camera_mount.set_mode_to_default(); } #endif // HAL_MOUNT_ENABLED } else { #if HAL_MOUNT_ENABLED // check if mount type requires us to rotate the sub if (!sub.camera_mount.has_pan_control()) { if (roi_location.get_vector_from_origin_NEU(sub.roi_WP)) { set_auto_yaw_mode(AUTO_YAW_ROI); } } // send the command to the camera mount sub.camera_mount.set_roi_target(roi_location); // TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below) // 0: do nothing // 1: point at next waypoint // 2: point at a waypoint taken from WP# parameter (2nd parameter?) // 3: point at a location given by alt, lon, lat parameters // 4: point at a target given a target id (can't be implemented) #else // if we have no camera mount aim the sub at the location if (roi_location.get_vector_from_origin_NEU(sub.roi_WP)) { set_auto_yaw_mode(AUTO_YAW_ROI); } #endif // HAL_MOUNT_ENABLED } } // Return true if it is possible to recover from a rangefinder failure bool ModeAuto::auto_terrain_recover_start() { // Check rangefinder status to see if recovery is possible switch (sub.rangefinder.status_orient(ROTATION_PITCH_270)) { case RangeFinder::Status::OutOfRangeLow: case RangeFinder::Status::OutOfRangeHigh: // RangeFinder::Good if just one valid sample was obtained recently, but ::rangefinder_state.alt_healthy // requires several consecutive valid readings for wpnav to accept rangefinder data case RangeFinder::Status::Good: sub.auto_mode = Auto_TerrainRecover; break; // Not connected or no data default: return false; // Rangefinder is not connected, or has stopped responding } // Initialize recovery timeout time sub.fs_terrain_recover_start_ms = AP_HAL::millis(); // Stop mission sub.mission.stop(); // Reset xy target sub.loiter_nav.clear_pilot_desired_acceleration(); sub.loiter_nav.init_target(); // Reset z axis controller position_control->relax_z_controller(motors.get_throttle_hover()); // initialize vertical maximum speeds and acceleration position_control->set_max_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z()); position_control->set_correction_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z()); gcs().send_text(MAV_SEVERITY_WARNING, "Attempting auto failsafe recovery"); return true; } // Attempt recovery from terrain failsafe // If recovery is successful resume mission // If recovery fails revert to failsafe action void ModeAuto::auto_terrain_recover_run() { float target_climb_rate = 0; static uint32_t rangefinder_recovery_ms = 0; // if not armed set throttle to zero and exit immediately if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control->set_throttle_out(0,true,g.throttle_filt); attitude_control->relax_attitude_controllers(); sub.loiter_nav.init_target(); // Reset xy target position_control->relax_z_controller(motors.get_throttle_hover()); // Reset z axis controller return; } switch (sub.rangefinder.status_orient(ROTATION_PITCH_270)) { case RangeFinder::Status::OutOfRangeLow: target_climb_rate = sub.wp_nav.get_default_speed_up(); rangefinder_recovery_ms = 0; break; case RangeFinder::Status::OutOfRangeHigh: target_climb_rate = sub.wp_nav.get_default_speed_down(); rangefinder_recovery_ms = 0; break; case RangeFinder::Status::Good: // exit on success (recovered rangefinder data) target_climb_rate = 0; // Attempt to hold current depth if (sub.rangefinder_state.alt_healthy) { // Start timer as soon as rangefinder is healthy if (rangefinder_recovery_ms == 0) { rangefinder_recovery_ms = AP_HAL::millis(); position_control->relax_z_controller(motors.get_throttle_hover()); // Reset alt hold targets } // 1.5 seconds of healthy rangefinder means we can resume mission with terrain enabled if (AP_HAL::millis() > rangefinder_recovery_ms + 1500) { gcs().send_text(MAV_SEVERITY_INFO, "Terrain failsafe recovery successful!"); sub.failsafe_terrain_set_status(true); // Reset failsafe timers sub.failsafe.terrain = false; // Clear flag sub.auto_mode = Auto_Loiter; // Switch back to loiter for next iteration sub.mission.resume(); // Resume mission rangefinder_recovery_ms = 0; // Reset for subsequent recoveries } } break; // Not connected, or no data default: // Terrain failsafe recovery has failed, terrain data is not available // and rangefinder is not connected, or has stopped responding gcs().send_text(MAV_SEVERITY_CRITICAL, "Terrain failsafe recovery failure: No Rangefinder!"); sub.failsafe_terrain_act(); rangefinder_recovery_ms = 0; return; } // exit on failure (timeout) if (AP_HAL::millis() > sub.fs_terrain_recover_start_ms + FS_TERRAIN_RECOVER_TIMEOUT_MS) { // Recovery has failed, revert to failsafe action gcs().send_text(MAV_SEVERITY_CRITICAL, "Terrain failsafe recovery timeout!"); sub.failsafe_terrain_act(); } // run loiter controller sub.loiter_nav.update(); /////////////////////// // update xy targets // float lateral_out, forward_out; sub.translate_wpnav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); ///////////////////// // update z target // position_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate); position_control->update_z_controller(); //////////////////////////// // update angular targets // float target_roll = 0; float target_pitch = 0; // convert pilot input to lean angles // To-Do: convert sub.get_pilot_desired_lean_angles to return angles as floats sub.get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, sub.aparm.angle_max); float target_yaw_rate = 0; // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate); }