#include #if HAL_CPU_CLASS >= HAL_CPU_CLASS_150 #include "AP_NavEKF3_core.h" #include #include #include /* parameter defaults for different types of vehicle. The APM_BUILD_DIRECTORY is taken from the main vehicle directory name where the code is built. */ #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_Replay) // copter defaults #define VELNE_M_NSE_DEFAULT 0.5f #define VELD_M_NSE_DEFAULT 0.7f #define POSNE_M_NSE_DEFAULT 0.5f #define ALT_M_NSE_DEFAULT 2.0f #define MAG_M_NSE_DEFAULT 0.05f #define GYRO_P_NSE_DEFAULT 1.5E-02f #define ACC_P_NSE_DEFAULT 3.5E-01f #define GBIAS_P_NSE_DEFAULT 1.0E-03f #define ABIAS_P_NSE_DEFAULT 3.0E-03f #define MAGB_P_NSE_DEFAULT 1.0E-04f #define MAGE_P_NSE_DEFAULT 1.0E-03f #define VEL_I_GATE_DEFAULT 500 #define POS_I_GATE_DEFAULT 500 #define HGT_I_GATE_DEFAULT 500 #define MAG_I_GATE_DEFAULT 300 #define MAG_CAL_DEFAULT 3 #define GLITCH_RADIUS_DEFAULT 25 #define FLOW_MEAS_DELAY 10 #define FLOW_M_NSE_DEFAULT 0.25f #define FLOW_I_GATE_DEFAULT 300 #define CHECK_SCALER_DEFAULT 100 #elif APM_BUILD_TYPE(APM_BUILD_APMrover2) // rover defaults #define VELNE_M_NSE_DEFAULT 0.5f #define VELD_M_NSE_DEFAULT 0.7f #define POSNE_M_NSE_DEFAULT 0.5f #define ALT_M_NSE_DEFAULT 2.0f #define MAG_M_NSE_DEFAULT 0.05f #define GYRO_P_NSE_DEFAULT 1.5E-02f #define ACC_P_NSE_DEFAULT 3.5E-01f #define GBIAS_P_NSE_DEFAULT 1.0E-03f #define ABIAS_P_NSE_DEFAULT 3.0E-03f #define MAGB_P_NSE_DEFAULT 1.0E-04f #define MAGE_P_NSE_DEFAULT 1.0E-03f #define VEL_I_GATE_DEFAULT 500 #define POS_I_GATE_DEFAULT 500 #define HGT_I_GATE_DEFAULT 500 #define MAG_I_GATE_DEFAULT 300 #define MAG_CAL_DEFAULT 2 #define GLITCH_RADIUS_DEFAULT 25 #define FLOW_MEAS_DELAY 10 #define FLOW_M_NSE_DEFAULT 0.25f #define FLOW_I_GATE_DEFAULT 300 #define CHECK_SCALER_DEFAULT 100 #elif APM_BUILD_TYPE(APM_BUILD_ArduPlane) // plane defaults #define VELNE_M_NSE_DEFAULT 0.5f #define VELD_M_NSE_DEFAULT 0.7f #define POSNE_M_NSE_DEFAULT 0.5f #define ALT_M_NSE_DEFAULT 3.0f #define MAG_M_NSE_DEFAULT 0.05f #define GYRO_P_NSE_DEFAULT 1.5E-02f #define ACC_P_NSE_DEFAULT 3.5E-01f #define GBIAS_P_NSE_DEFAULT 1.0E-03f #define ABIAS_P_NSE_DEFAULT 3.0E-03f #define MAGB_P_NSE_DEFAULT 1.0E-04f #define MAGE_P_NSE_DEFAULT 1.0E-03f #define VEL_I_GATE_DEFAULT 500 #define POS_I_GATE_DEFAULT 500 #define HGT_I_GATE_DEFAULT 500 #define MAG_I_GATE_DEFAULT 300 #define MAG_CAL_DEFAULT 0 #define GLITCH_RADIUS_DEFAULT 25 #define FLOW_MEAS_DELAY 10 #define FLOW_M_NSE_DEFAULT 0.25f #define FLOW_I_GATE_DEFAULT 300 #define CHECK_SCALER_DEFAULT 100 #else // build type not specified, use copter defaults #define VELNE_M_NSE_DEFAULT 0.5f #define VELD_M_NSE_DEFAULT 0.7f #define POSNE_M_NSE_DEFAULT 0.5f #define ALT_M_NSE_DEFAULT 2.0f #define MAG_M_NSE_DEFAULT 0.05f #define GYRO_P_NSE_DEFAULT 1.5E-02f #define ACC_P_NSE_DEFAULT 3.5E-01f #define GBIAS_P_NSE_DEFAULT 1.0E-03f #define ABIAS_P_NSE_DEFAULT 3.0E-03f #define MAGB_P_NSE_DEFAULT 1.0E-04f #define MAGE_P_NSE_DEFAULT 1.0E-03f #define VEL_I_GATE_DEFAULT 500 #define POS_I_GATE_DEFAULT 500 #define HGT_I_GATE_DEFAULT 500 #define MAG_I_GATE_DEFAULT 300 #define MAG_CAL_DEFAULT 3 #define GLITCH_RADIUS_DEFAULT 25 #define FLOW_MEAS_DELAY 10 #define FLOW_M_NSE_DEFAULT 0.25f #define FLOW_I_GATE_DEFAULT 300 #define CHECK_SCALER_DEFAULT 100 #endif // APM_BUILD_DIRECTORY extern const AP_HAL::HAL& hal; // Define tuning parameters const AP_Param::GroupInfo NavEKF3::var_info[] = { // @Param: ENABLE // @DisplayName: Enable EKF3 // @Description: This enables EKF3. Enabling EKF3 only makes the maths run, it does not mean it will be used for flight control. To use it for flight control set AHRS_EKF_TYPE=3. A reboot or restart will need to be performed after changing the value of EK3_ENABLE for it to take effect. // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO_FLAGS("ENABLE", 0, NavEKF3, _enable, 0, AP_PARAM_FLAG_ENABLE), // GPS measurement parameters // @Param: GPS_TYPE // @DisplayName: GPS mode control // @Description: This controls use of GPS measurements : 0 = use 3D velocity & 2D position, 1 = use 2D velocity and 2D position, 2 = use 2D position, 3 = Inhibit GPS use - this can be useful when flying with an optical flow sensor in an environment where GPS quality is poor and subject to large multipath errors. // @Values: 0:GPS 3D Vel and 2D Pos, 1:GPS 2D vel and 2D pos, 2:GPS 2D pos, 3:No GPS // @User: Advanced AP_GROUPINFO("GPS_TYPE", 1, NavEKF3, _fusionModeGPS, 0), // @Param: VELNE_M_NSE // @DisplayName: GPS horizontal velocity measurement noise (m/s) // @Description: This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set horizontal velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS horizontal velocity measurements. // @Range: 0.05 5.0 // @Increment: 0.05 // @User: Advanced // @Units: m/s AP_GROUPINFO("VELNE_M_NSE", 2, NavEKF3, _gpsHorizVelNoise, VELNE_M_NSE_DEFAULT), // @Param: VELD_M_NSE // @DisplayName: GPS vertical velocity measurement noise (m/s) // @Description: This sets a lower limit on the speed accuracy reported by the GPS receiver that is used to set vertical velocity observation noise. If the model of receiver used does not provide a speed accurcy estimate, then the parameter value will be used. Increasing it reduces the weighting of the GPS vertical velocity measurements. // @Range: 0.05 5.0 // @Increment: 0.05 // @User: Advanced // @Units: m/s AP_GROUPINFO("VELD_M_NSE", 3, NavEKF3, _gpsVertVelNoise, VELD_M_NSE_DEFAULT), // @Param: VEL_I_GATE // @DisplayName: GPS velocity innovation gate size // @Description: This sets the percentage number of standard deviations applied to the GPS velocity measurement innovation consistency check. Decreasing it makes it more likely that good measurements willbe rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("VEL_I_GATE", 4, NavEKF3, _gpsVelInnovGate, VEL_I_GATE_DEFAULT), // @Param: POSNE_M_NSE // @DisplayName: GPS horizontal position measurement noise (m) // @Description: This sets the GPS horizontal position observation noise. Increasing it reduces the weighting of GPS horizontal position measurements. // @Range: 0.1 10.0 // @Increment: 0.1 // @User: Advanced // @Units: m AP_GROUPINFO("POSNE_M_NSE", 5, NavEKF3, _gpsHorizPosNoise, POSNE_M_NSE_DEFAULT), // @Param: POS_I_GATE // @DisplayName: GPS position measurement gate size // @Description: This sets the percentage number of standard deviations applied to the GPS position measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("POS_I_GATE", 6, NavEKF3, _gpsPosInnovGate, POS_I_GATE_DEFAULT), // @Param: GLITCH_RAD // @DisplayName: GPS glitch radius gate size (m) // @Description: This controls the maximum radial uncertainty in position between the value predicted by the filter and the value measured by the GPS before the filter position and velocity states are reset to the GPS. Making this value larger allows the filter to ignore larger GPS glitches but also means that non-GPS errors such as IMU and compass can create a larger error in position before the filter is forced back to the GPS position. // @Range: 10 100 // @Increment: 5 // @User: Advanced // @Units: m AP_GROUPINFO("GLITCH_RAD", 7, NavEKF3, _gpsGlitchRadiusMax, GLITCH_RADIUS_DEFAULT), // 8 previously used for EKF3_GPS_DELAY parameter that has been deprecated. // The EKF now takes its GPs delay form the GPS library with the default delays // specified by the GPS_DELAY and GPS_DELAY2 parameters. // Height measurement parameters // @Param: ALT_SOURCE // @DisplayName: Primary altitude sensor source // @Description: This parameter controls the primary height sensor used by the EKF. If the selected option cannot be used, it will default to Baro as the primary height source. Setting 0 will use the baro altitude at all times. Setting 1 uses the range finder and is only available in combination with optical flow navigation (EK3_GPS_TYPE = 3). Setting 2 uses GPS. Setting 3 uses the range beacon data. NOTE - the EK3_RNG_USE_HGT parameter can be used to switch to range-finder when close to the ground. // @Values: 0:Use Baro, 1:Use Range Finder, 2:Use GPS, 3:Use Range Beacon // @User: Advanced AP_GROUPINFO("ALT_SOURCE", 9, NavEKF3, _altSource, 0), // @Param: ALT_M_NSE // @DisplayName: Altitude measurement noise (m) // @Description: This is the RMS value of noise in the altitude measurement. Increasing it reduces the weighting of the baro measurement and will make the filter respond more slowly to baro measurement errors, but will make it more sensitive to GPS and accelerometer errors. // @Range: 0.1 10.0 // @Increment: 0.1 // @User: Advanced // @Units: m AP_GROUPINFO("ALT_M_NSE", 10, NavEKF3, _baroAltNoise, ALT_M_NSE_DEFAULT), // @Param: HGT_I_GATE // @DisplayName: Height measurement gate size // @Description: This sets the percentage number of standard deviations applied to the height measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("HGT_I_GATE", 11, NavEKF3, _hgtInnovGate, HGT_I_GATE_DEFAULT), // @Param: HGT_DELAY // @DisplayName: Height measurement delay (msec) // @Description: This is the number of msec that the Height measurements lag behind the inertial measurements. // @Range: 0 250 // @Increment: 10 // @RebootRequired: True // @User: Advanced // @Units: milliseconds AP_GROUPINFO("HGT_DELAY", 12, NavEKF3, _hgtDelay_ms, 60), // Magnetometer measurement parameters // @Param: MAG_M_NSE // @DisplayName: Magnetometer measurement noise (Gauss) // @Description: This is the RMS value of noise in magnetometer measurements. Increasing it reduces the weighting on these measurements. // @Range: 0.01 0.5 // @Increment: 0.01 // @User: Advanced // @Units: gauss AP_GROUPINFO("MAG_M_NSE", 13, NavEKF3, _magNoise, MAG_M_NSE_DEFAULT), // @Param: MAG_CAL // @DisplayName: Magnetometer default fusion mode // @Description: This determines when the filter will use the 3-axis magnetometer fusion model that estimates both earth and body fixed magnetic field states and when it will use a simpler magnetic heading fusion model that does not use magnetic field states. The 3-axis magnetometer fusion is only suitable for use when the external magnetic field environment is stable. EK3_MAG_CAL = 0 uses heading fusion on ground, 3-axis fusion in-flight, and is the default setting for Plane users. EK3_MAG_CAL = 1 uses 3-axis fusion only when manoeuvring. EK3_MAG_CAL = 2 uses heading fusion at all times, is recommended if the external magnetic field is varying and is the default for rovers. EK3_MAG_CAL = 3 uses heading fusion on the ground and 3-axis fusion after the first in-air field and yaw reset has completed, and is the default for copters. EK3_MAG_CAL = 4 uses 3-axis fusion at all times. NOTE : Use of simple heading magnetometer fusion makes vehicle compass calibration and alignment errors harder for the EKF to detect which reduces the sensitivity of the Copter EKF failsafe algorithm. NOTE: The fusion mode can be forced to 2 for specific EKF cores using the EK3_MAG_MASK parameter. // @Values: 0:When flying,1:When manoeuvring,2:Never,3:After first climb yaw reset,4:Always // @User: Advanced AP_GROUPINFO("MAG_CAL", 14, NavEKF3, _magCal, MAG_CAL_DEFAULT), // @Param: MAG_I_GATE // @DisplayName: Magnetometer measurement gate size // @Description: This sets the percentage number of standard deviations applied to the magnetometer measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("MAG_I_GATE", 15, NavEKF3, _magInnovGate, MAG_I_GATE_DEFAULT), // Airspeed measurement parameters // @Param: EAS_M_NSE // @DisplayName: Equivalent airspeed measurement noise (m/s) // @Description: This is the RMS value of noise in equivalent airspeed measurements used by planes. Increasing it reduces the weighting of airspeed measurements and will make wind speed estimates less noisy and slower to converge. Increasing also increases navigation errors when dead-reckoning without GPS measurements. // @Range: 0.5 5.0 // @Increment: 0.1 // @User: Advanced // @Units: m/s AP_GROUPINFO("EAS_M_NSE", 16, NavEKF3, _easNoise, 1.4f), // @Param: EAS_I_GATE // @DisplayName: Airspeed measurement gate size // @Description: This sets the percentage number of standard deviations applied to the airspeed measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("EAS_I_GATE", 17, NavEKF3, _tasInnovGate, 400), // Rangefinder measurement parameters // @Param: RNG_M_NSE // @DisplayName: Range finder measurement noise (m) // @Description: This is the RMS value of noise in the range finder measurement. Increasing it reduces the weighting on this measurement. // @Range: 0.1 10.0 // @Increment: 0.1 // @User: Advanced // @Units: m AP_GROUPINFO("RNG_M_NSE", 18, NavEKF3, _rngNoise, 0.5f), // @Param: RNG_I_GATE // @DisplayName: Range finder measurement gate size // @Description: This sets the percentage number of standard deviations applied to the range finder innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("RNG_I_GATE", 19, NavEKF3, _rngInnovGate, 500), // Optical flow measurement parameters // @Param: MAX_FLOW // @DisplayName: Maximum valid optical flow rate // @Description: This sets the magnitude maximum optical flow rate in rad/sec that will be accepted by the filter // @Range: 1.0 4.0 // @Increment: 0.1 // @User: Advanced // @Units: rad/s AP_GROUPINFO("MAX_FLOW", 20, NavEKF3, _maxFlowRate, 2.5f), // @Param: FLOW_M_NSE // @DisplayName: Optical flow measurement noise (rad/s) // @Description: This is the RMS value of noise and errors in optical flow measurements. Increasing it reduces the weighting on these measurements. // @Range: 0.05 1.0 // @Increment: 0.05 // @User: Advanced // @Units: rad/s AP_GROUPINFO("FLOW_M_NSE", 21, NavEKF3, _flowNoise, FLOW_M_NSE_DEFAULT), // @Param: FLOW_I_GATE // @DisplayName: Optical Flow measurement gate size // @Description: This sets the percentage number of standard deviations applied to the optical flow innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("FLOW_I_GATE", 22, NavEKF3, _flowInnovGate, FLOW_I_GATE_DEFAULT), // @Param: FLOW_DELAY // @DisplayName: Optical Flow measurement delay (msec) // @Description: This is the number of msec that the optical flow measurements lag behind the inertial measurements. It is the time from the end of the optical flow averaging period and does not include the time delay due to the 100msec of averaging within the flow sensor. // @Range: 0 250 // @Increment: 10 // @RebootRequired: True // @User: Advanced // @Units: milliseconds AP_GROUPINFO("FLOW_DELAY", 23, NavEKF3, _flowDelay_ms, FLOW_MEAS_DELAY), // State and Covariance Predition Parameters // @Param: GYRO_P_NSE // @DisplayName: Rate gyro noise (rad/s) // @Description: This control disturbance noise controls the growth of estimated error due to gyro measurement errors excluding bias. Increasing it makes the flter trust the gyro measurements less and other measurements more. // @Range: 0.0001 0.1 // @Increment: 0.0001 // @User: Advanced // @Units: rad/s AP_GROUPINFO("GYRO_P_NSE", 24, NavEKF3, _gyrNoise, GYRO_P_NSE_DEFAULT), // @Param: ACC_P_NSE // @DisplayName: Accelerometer noise (m/s^2) // @Description: This control disturbance noise controls the growth of estimated error due to accelerometer measurement errors excluding bias. Increasing it makes the flter trust the accelerometer measurements less and other measurements more. // @Range: 0.01 1.0 // @Increment: 0.01 // @User: Advanced // @Units: m/s/s AP_GROUPINFO("ACC_P_NSE", 25, NavEKF3, _accNoise, ACC_P_NSE_DEFAULT), // @Param: GBIAS_P_NSE // @DisplayName: Rate gyro bias stability (rad/s/s) // @Description: This state process noise controls growth of the gyro delta angle bias state error estimate. Increasing it makes rate gyro bias estimation faster and noisier. // @Range: 0.00001 0.001 // @User: Advanced // @Units: rad/s/s AP_GROUPINFO("GBIAS_P_NSE", 26, NavEKF3, _gyroBiasProcessNoise, GBIAS_P_NSE_DEFAULT), // 27 previously used for EK2_GSCL_P_NSE parameter that has been removed // @Param: ABIAS_P_NSE // @DisplayName: Accelerometer bias stability (m/s^3) // @Description: This noise controls the growth of the vertical accelerometer delta velocity bias state error estimate. Increasing it makes accelerometer bias estimation faster and noisier. // @Range: 0.00001 0.001 // @User: Advanced // @Units: m/s/s/s AP_GROUPINFO("ABIAS_P_NSE", 28, NavEKF3, _accelBiasProcessNoise, ABIAS_P_NSE_DEFAULT), // 29 previously used for EK2_MAG_P_NSE parameter that has been replaced with EK3_MAGE_P_NSE and EK3_MAGB_P_NSE // @Param: WIND_P_NSE // @DisplayName: Wind velocity process noise (m/s^2) // @Description: This state process noise controls the growth of wind state error estimates. Increasing it makes wind estimation faster and noisier. // @Range: 0.01 1.0 // @Increment: 0.1 // @User: Advanced // @Units: m/s/s AP_GROUPINFO("WIND_P_NSE", 30, NavEKF3, _windVelProcessNoise, 0.1f), // @Param: WIND_PSCALE // @DisplayName: Height rate to wind process noise scaler // @Description: This controls how much the process noise on the wind states is increased when gaining or losing altitude to take into account changes in wind speed and direction with altitude. Increasing this parameter increases how rapidly the wind states adapt when changing altitude, but does make wind velocity estimation noiser. // @Range: 0.0 1.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("WIND_PSCALE", 31, NavEKF3, _wndVarHgtRateScale, 0.5f), // @Param: GPS_CHECK // @DisplayName: GPS preflight check // @Description: This is a 1 byte bitmap controlling which GPS preflight checks are performed. Set to 0 to bypass all checks. Set to 255 perform all checks. Set to 3 to check just the number of satellites and HDoP. Set to 31 for the most rigorous checks that will still allow checks to pass when the copter is moving, eg launch from a boat. // @Bitmask: 0:NSats,1:HDoP,2:speed error,3:position error,4:yaw error,5:pos drift,6:vert speed,7:horiz speed // @User: Advanced AP_GROUPINFO("GPS_CHECK", 32, NavEKF3, _gpsCheck, 31), // @Param: IMU_MASK // @DisplayName: Bitmask of active IMUs // @Description: 1 byte bitmap of IMUs to use in EKF3. A separate instance of EKF3 will be started for each IMU selected. Set to 1 to use the first IMU only (default), set to 2 to use the second IMU only, set to 3 to use the first and second IMU. Additional IMU's can be used up to a maximum of 6 if memory and processing resources permit. There may be insufficient memory and processing resources to run multiple instances. If this occurs EKF3 will fail to start. // @Bitmask: 0:FirstIMU,1:SecondIMU,2:ThirdIMU,3:FourthIMU,4:FifthIMU,5:SixthIMU // @User: Advanced AP_GROUPINFO("IMU_MASK", 33, NavEKF3, _imuMask, 3), // @Param: CHECK_SCALE // @DisplayName: GPS accuracy check scaler (%) // @Description: This scales the thresholds that are used to check GPS accuracy before it is used by the EKF. A value of 100 is the default. Values greater than 100 increase and values less than 100 reduce the maximum GPS error the EKF will accept. A value of 200 will double the allowable GPS error. // @Range: 50 200 // @User: Advanced // @Units: % AP_GROUPINFO("CHECK_SCALE", 34, NavEKF3, _gpsCheckScaler, CHECK_SCALER_DEFAULT), // @Param: NOAID_M_NSE // @DisplayName: Non-GPS operation position uncertainty (m) // @Description: This sets the amount of position variation that the EKF allows for when operating without external measurements (eg GPS or optical flow). Increasing this parameter makes the EKF attitude estimate less sensitive to vehicle manoeuvres but more sensitive to IMU errors. // @Range: 0.5 50.0 // @User: Advanced // @Units: m AP_GROUPINFO("NOAID_M_NSE", 35, NavEKF3, _noaidHorizNoise, 10.0f), // @Param: LOG_MASK // @DisplayName: EKF sensor logging IMU mask // @Description: This sets the IMU mask of sensors to do full logging for // @Bitmask: 0:FirstIMU,1:SecondIMU,2:ThirdIMU,3:FourthIMU,4:FifthIMU,5:SixthIMU // @User: Advanced AP_GROUPINFO("LOG_MASK", 36, NavEKF3, _logging_mask, 1), // control of magentic yaw angle fusion // @Param: YAW_M_NSE // @DisplayName: Yaw measurement noise (rad) // @Description: This is the RMS value of noise in yaw measurements from the magnetometer. Increasing it reduces the weighting on these measurements. // @Range: 0.05 1.0 // @Increment: 0.05 // @User: Advanced // @Units: rad AP_GROUPINFO("YAW_M_NSE", 37, NavEKF3, _yawNoise, 0.5f), // @Param: YAW_I_GATE // @DisplayName: Yaw measurement gate size // @Description: This sets the percentage number of standard deviations applied to the magnetometer yaw measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("YAW_I_GATE", 38, NavEKF3, _yawInnovGate, 300), // @Param: TAU_OUTPUT // @DisplayName: Output complementary filter time constant (centi-sec) // @Description: Sets the time constant of the output complementary filter/predictor in centi-seconds. // @Range: 10 50 // @Increment: 5 // @User: Advanced // @Units: cs AP_GROUPINFO("TAU_OUTPUT", 39, NavEKF3, _tauVelPosOutput, 25), // @Param: MAGE_P_NSE // @DisplayName: Earth magnetic field process noise (gauss/s) // @Description: This state process noise controls the growth of earth magnetic field state error estimates. Increasing it makes earth magnetic field estimation faster and noisier. // @Range: 0.00001 0.01 // @User: Advanced // @Units: gauss/s AP_GROUPINFO("MAGE_P_NSE", 40, NavEKF3, _magEarthProcessNoise, MAGE_P_NSE_DEFAULT), // @Param: MAGB_P_NSE // @DisplayName: Body magnetic field process noise (gauss/s) // @Description: This state process noise controls the growth of body magnetic field state error estimates. Increasing it makes magnetometer bias error estimation faster and noisier. // @Range: 0.00001 0.01 // @User: Advanced // @Units: gauss/s AP_GROUPINFO("MAGB_P_NSE", 41, NavEKF3, _magBodyProcessNoise, MAGB_P_NSE_DEFAULT), // @Param: RNG_USE_HGT // @DisplayName: Range finder switch height percentage // @Description: The range finder will be used as the primary height source when below a specified percentage of the sensor maximum as set by the RNGFND_MAX_CM parameter. Set to -1 to prevent range finder use. // @Range: -1 70 // @Increment: 1 // @User: Advanced // @Units: % AP_GROUPINFO("RNG_USE_HGT", 42, NavEKF3, _useRngSwHgt, -1), // @Param: TERR_GRAD // @DisplayName: Maximum terrain gradient // @Description: Specifies the maximum gradient of the terrain below the vehicle when it is using range finder as a height reference // @Range: 0 0.2 // @Increment: 0.01 // @User: Advanced AP_GROUPINFO("TERR_GRAD", 43, NavEKF3, _terrGradMax, 0.1f), // @Param: BCN_M_NSE // @DisplayName: Range beacon measurement noise (m) // @Description: This is the RMS value of noise in the range beacon measurement. Increasing it reduces the weighting on this measurement. // @Range: 0.1 10.0 // @Increment: 0.1 // @User: Advanced // @Units: m AP_GROUPINFO("BCN_M_NSE", 44, NavEKF3, _rngBcnNoise, 1.0f), // @Param: BCN_I_GTE // @DisplayName: Range beacon measurement gate size // @Description: This sets the percentage number of standard deviations applied to the range beacon measurement innovation consistency check. Decreasing it makes it more likely that good measurements will be rejected. Increasing it makes it more likely that bad measurements will be accepted. // @Range: 100 1000 // @Increment: 25 // @User: Advanced AP_GROUPINFO("BCN_I_GTE", 45, NavEKF3, _rngBcnInnovGate, 500), // @Param: BCN_DELAY // @DisplayName: Range beacon measurement delay (msec) // @Description: This is the number of msec that the range beacon measurements lag behind the inertial measurements. // @Range: 0 250 // @Increment: 10 // @RebootRequired: True // @User: Advanced // @Units: milliseconds AP_GROUPINFO("BCN_DELAY", 46, NavEKF3, _rngBcnDelay_ms, 50), // @Param: RNG_USE_SPD // @DisplayName: Range finder max ground speed // @Description: The range finder will not be used as the primary height source when the horizontal ground speed is greater than this value. // @Range: 2.0 6.0 // @Increment: 0.5 // @User: Advanced // @Units: m/s AP_GROUPINFO("RNG_USE_SPD", 47, NavEKF3, _useRngSwSpd, 2.0f), // @Param: ACC_BIAS_LIM // @DisplayName: Accelerometer bias limit // @Description: The accelerometer bias state will be limited to +- this value // @Range: 0.5 2.5 // @Increment: 0.1 // @User: Advanced // @Units: m/s/s AP_GROUPINFO("ACC_BIAS_LIM", 48, NavEKF3, _accBiasLim, 1.0f), // @Param: MAG_MASK // @DisplayName: Bitmask of active EKF cores that will always use heading fusion // @Description: 1 byte bitmap of EKF cores that will disable magnetic field states and use simple magnetic heading fusion at all times. This parameter enables specified cores to be used as a backup for flight into an environment with high levels of external magnetic interference which may degrade the EKF attitude estimate when using 3-axis magnetometer fusion. NOTE : Use of a different magnetometer fusion algorithm on different cores makes unwanted EKF core switches due to magnetometer errors more likely. // @Bitmask: 0:FirstEKF,1:SecondEKF,2:ThirdEKF,3:FourthEKF,4:FifthEKF,5:SixthEKF // @User: Advanced AP_GROUPINFO("MAG_MASK", 49, NavEKF3, _magMask, 0), AP_GROUPEND }; NavEKF3::NavEKF3(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng) : _ahrs(ahrs), _baro(baro), _rng(rng), gpsNEVelVarAccScale(0.05f), // Scale factor applied to horizontal velocity measurement variance due to manoeuvre acceleration - used when GPS doesn't report speed error gpsDVelVarAccScale(0.07f), // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration - used when GPS doesn't report speed error gpsPosVarAccScale(0.05f), // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration magDelay_ms(60), // Magnetometer measurement delay (msec) tasDelay_ms(100), // Airspeed measurement delay (msec) tiltDriftTimeMax_ms(15000), // Maximum number of ms allowed without any form of tilt aiding (GPS, flow, TAS, etc) posRetryTimeUseVel_ms(10000), // Position aiding retry time with velocity measurements (msec) posRetryTimeNoVel_ms(7000), // Position aiding retry time without velocity measurements (msec) hgtRetryTimeMode0_ms(10000), // Height retry time with vertical velocity measurement (msec) hgtRetryTimeMode12_ms(5000), // Height retry time without vertical velocity measurement (msec) tasRetryTime_ms(5000), // True airspeed timeout and retry interval (msec) magFailTimeLimit_ms(10000), // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec) magVarRateScale(0.005f), // scale factor applied to magnetometer variance due to angular rate and measurement timing jitter. Assume timing jitter of 10msec gyroBiasNoiseScaler(2.0f), // scale factor applied to imu gyro bias learning before the vehicle is armed hgtAvg_ms(100), // average number of msec between height measurements betaAvg_ms(100), // average number of msec between synthetic sideslip measurements covTimeStepMax(0.1f), // maximum time (sec) between covariance prediction updates covDelAngMax(0.05f), // maximum delta angle between covariance prediction updates DCM33FlowMin(0.71f), // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high. fScaleFactorPnoise(1e-10f), // Process noise added to focal length scale factor state variance at each time step flowTimeDeltaAvg_ms(100), // average interval between optical flow measurements (msec) flowIntervalMax_ms(100), // maximum allowable time between flow fusion events gndEffectTimeout_ms(1000), // time in msec that baro ground effect compensation will timeout after initiation gndEffectBaroScaler(4.0f), // scaler applied to the barometer observation variance when operating in ground effect gndGradientSigma(50), // RMS terrain gradient percentage assumed by the terrain height estimation fusionTimeStep_ms(10), // The minimum number of msec between covariance prediction and fusion operations sensorIntervalMin_ms(50), // The minimum allowed time between measurements from any non-IMU sensor (msec) runCoreSelection(false) // true when the default primary core has stabilised after startup and core selection can run { AP_Param::setup_object_defaults(this, var_info); } /* see if we should log some sensor data */ void NavEKF3::check_log_write(void) { if (!have_ekf_logging()) { return; } if (logging.log_compass) { DataFlash_Class::instance()->Log_Write_Compass(*_ahrs->get_compass(), imuSampleTime_us); logging.log_compass = false; } if (logging.log_gps) { DataFlash_Class::instance()->Log_Write_GPS(_ahrs->get_gps(), _ahrs->get_gps().primary_sensor(), imuSampleTime_us); logging.log_gps = false; } if (logging.log_baro) { DataFlash_Class::instance()->Log_Write_Baro(_baro, imuSampleTime_us); logging.log_baro = false; } if (logging.log_imu) { const AP_InertialSensor &ins = _ahrs->get_ins(); DataFlash_Class::instance()->Log_Write_IMUDT(ins, imuSampleTime_us, _logging_mask.get()); logging.log_imu = false; } // this is an example of an ad-hoc log in EKF // DataFlash_Class::instance()->Log_Write("NKA", "TimeUS,X", "Qf", AP_HAL::micros64(), (double)2.4f); } // Initialise the filter bool NavEKF3::InitialiseFilter(void) { if (_enable == 0) { return false; } imuSampleTime_us = AP_HAL::micros64(); if (core == nullptr) { // see if we will be doing logging DataFlash_Class *dataflash = DataFlash_Class::instance(); if (dataflash != nullptr) { logging.enabled = dataflash->log_replay(); } // don't run multiple filters for 1 IMU const AP_InertialSensor &ins = _ahrs->get_ins(); uint8_t mask = (1U<available_memory() < sizeof(NavEKF3_core)*num_cores + 4096) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "NavEKF3: not enough memory"); _enable.set(0); return false; } // create the cores core = new NavEKF3_core[num_cores]; if (core == nullptr) { _enable.set(0); GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "NavEKF3: allocation failed"); return false; } } // Set up any cores that have been created // This specifies the IMU to be used and creates the data buffers // If we are unble to set up a core, return false and try again next time the function is called bool core_setup_success = true; for (uint8_t core_index=0; core_indexget_ins(); bool statePredictEnabled[num_cores]; for (uint8_t i=0; i 0) && (core[i-1].getFramesSincePredict() < 2) && (ins.get_sample_rate() > 200)) { statePredictEnabled[i] = false; } else { statePredictEnabled[i] = true; } core[i].UpdateFilter(statePredictEnabled[i]); } // If the current core selected has a bad error score or is unhealthy, switch to a healthy core with the lowest fault score // Don't start running the check until the primary core has started returned healthy for at least 10 seconds to avoid switching // due to initial alignment fluctuations and race conditions if (!runCoreSelection) { static uint64_t lastUnhealthyTime_us = 0; if (!core[primary].healthy() || lastUnhealthyTime_us == 0) { lastUnhealthyTime_us = imuSampleTime_us; } runCoreSelection = (imuSampleTime_us - lastUnhealthyTime_us) > 1E7; } float primaryErrorScore = core[primary].errorScore(); if ((primaryErrorScore > 1.0f || !core[primary].healthy()) && runCoreSelection) { float lowestErrorScore = 0.67f * primaryErrorScore; uint8_t newPrimaryIndex = primary; // index for new primary for (uint8_t coreIndex=0; coreIndex= num_cores) instance = primary; if (!core) { return false; } return core[instance].getPosNE(posNE); } // Write the last calculated D position relative to the reference point (m). // If a calculated solution is not available, use the best available data and return false // If false returned, do not use for flight control bool NavEKF3::getPosD(int8_t instance, float &posD) { if (instance < 0 || instance >= num_cores) instance = primary; if (!core) { return false; } return core[instance].getPosD(posD); } // return NED velocity in m/s void NavEKF3::getVelNED(int8_t instance, Vector3f &vel) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getVelNED(vel); } } // Return the rate of change of vertical position in the down direction (dPosD/dt) in m/s float NavEKF3::getPosDownDerivative(int8_t instance) { if (instance < 0 || instance >= num_cores) instance = primary; // return the value calculated from a complementary filer applied to the EKF height and vertical acceleration if (core) { return core[instance].getPosDownDerivative(); } return 0.0f; } // This returns the specific forces in the NED frame void NavEKF3::getAccelNED(Vector3f &accelNED) const { if (core) { core[primary].getAccelNED(accelNED); } } // return body axis gyro bias estimates in rad/sec void NavEKF3::getGyroBias(int8_t instance, Vector3f &gyroBias) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getGyroBias(gyroBias); } } // return accelerometer bias estimate in m/s/s void NavEKF3::getAccelBias(int8_t instance, Vector3f &accelBias) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getAccelBias(accelBias); } } // return tilt error convergence metric for the specified instance void NavEKF3::getTiltError(int8_t instance, float &ang) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getTiltError(ang); } } // reset body axis gyro bias estimates void NavEKF3::resetGyroBias(void) { if (core) { for (uint8_t i=0; i= num_cores) instance = primary; if (core) { core[instance].getWind(wind); } } // return earth magnetic field estimates in measurement units / 1000 void NavEKF3::getMagNED(int8_t instance, Vector3f &magNED) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getMagNED(magNED); } } // return body magnetic field estimates in measurement units / 1000 void NavEKF3::getMagXYZ(int8_t instance, Vector3f &magXYZ) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getMagXYZ(magXYZ); } } // return the magnetometer in use for the specified instance uint8_t NavEKF3::getActiveMag(int8_t instance) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { return core[instance].getActiveMag(); } else { return 255; } } // Return estimated magnetometer offsets // Return true if magnetometer offsets are valid bool NavEKF3::getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const { if (!core) { return false; } // try the primary first, else loop through all of the cores and return when one has offsets for this mag instance if (core[primary].getMagOffsets(mag_idx, magOffsets)) { return true; } for (uint8_t i=0; i= num_cores) instance = primary; if (core) { core[instance].getEulerAngles(eulers); } } // return the transformation matrix from XYZ (body) to NED axes void NavEKF3::getRotationBodyToNED(Matrix3f &mat) const { if (core) { core[primary].getRotationBodyToNED(mat); } } // return the quaternions defining the rotation from NED to XYZ (body) axes void NavEKF3::getQuaternion(Quaternion &quat) const { if (core) { core[primary].getQuaternion(quat); } } // return the innovations for the specified instance void NavEKF3::getInnovations(int8_t instance, Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov); } } // publish output observer angular, velocity and position tracking error void NavEKF3::getOutputTrackingError(int8_t instance, Vector3f &error) const { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getOutputTrackingError(error); } } // return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements void NavEKF3::getVariances(int8_t instance, float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); } } // should we use the compass? This is public so it can be used for // reporting via ahrs.use_compass() bool NavEKF3::use_compass(void) const { if (!core) { return false; } return core[primary].use_compass(); } // write the raw optical flow measurements // rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality // rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes. // rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro // The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate // msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor. // posOffset is the XYZ flow sensor position in the body frame in m void NavEKF3::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset) { if (core) { for (uint8_t i=0; i= num_cores) instance = primary; if (core) { core[instance].getFlowDebug(varFlow, gndOffset, flowInnovX, flowInnovY, auxInnov, HAGL, rngInnov, range, gndOffsetErr); } } // return data for debugging range beacon fusion bool NavEKF3::getRangeBeaconDebug(int8_t instance, uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED, float &offsetHigh, float &offsetLow, Vector3f &posNED) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { return core[instance].getRangeBeaconDebug(ID, rng, innov, innovVar, testRatio, beaconPosNED, offsetHigh, offsetLow, posNED); } else { return false; } } // called by vehicle code to specify that a takeoff is happening // causes the EKF to compensate for expected barometer errors due to ground effect void NavEKF3::setTakeoffExpected(bool val) { if (core) { for (uint8_t i=0; i= num_cores) instance = primary; if (core) { core[instance].getFilterFaults(faults); } else { faults = 0; } } /* return filter timeout status as a bitmasked integer 0 = position measurement timeout 1 = velocity measurement timeout 2 = height measurement timeout 3 = magnetometer measurement timeout 5 = unassigned 6 = unassigned 7 = unassigned 7 = unassigned */ void NavEKF3::getFilterTimeouts(int8_t instance, uint8_t &timeouts) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getFilterTimeouts(timeouts); } else { timeouts = 0; } } /* return filter status flags */ void NavEKF3::getFilterStatus(int8_t instance, nav_filter_status &status) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getFilterStatus(status); } else { memset(&status, 0, sizeof(status)); } } /* return filter gps quality check status */ void NavEKF3::getFilterGpsStatus(int8_t instance, nav_gps_status &status) { if (instance < 0 || instance >= num_cores) instance = primary; if (core) { core[instance].getFilterGpsStatus(status); } else { memset(&status, 0, sizeof(status)); } } // send an EKF_STATUS_REPORT message to GCS void NavEKF3::send_status_report(mavlink_channel_t chan) { if (core) { core[primary].send_status_report(chan); } } // provides the height limit to be observed by the control loops // returns false if no height limiting is required // this is needed to ensure the vehicle does not fly too high when using optical flow navigation bool NavEKF3::getHeightControlLimit(float &height) const { if (!core) { return false; } return core[primary].getHeightControlLimit(height); } // Returns the amount of yaw angle change (in radians) due to the last yaw angle reset or core selection switch // Returns the time of the last yaw angle reset or 0 if no reset or core switch has ever occurred // Where there are multiple consumers, they must access this function on the same frame as each other uint32_t NavEKF3::getLastYawResetAngle(float &yawAngDelta) { if (!core) { return 0; } yawAngDelta = 0.0f; // Do the conversion to msec in one place uint32_t now_time_ms = imuSampleTime_us / 1000; // The last time we switched to the current primary core is the first reset event uint32_t lastYawReset_ms = yaw_reset_data.last_primary_change; // There has been a change notification in the primary core that the controller has not consumed // or this is a repeated acce if (yaw_reset_data.core_changed || yaw_reset_data.last_function_call == now_time_ms) { yawAngDelta = yaw_reset_data.core_delta; yaw_reset_data.core_changed = false; } // Record last time controller got the yaw reset yaw_reset_data.last_function_call = now_time_ms; // There has been a reset inside the core since we switched so update the time and delta float temp_yawAng; uint32_t lastCoreYawReset_ms = core[primary].getLastYawResetAngle(temp_yawAng); if (lastCoreYawReset_ms > lastYawReset_ms) { yawAngDelta = wrap_PI(yawAngDelta + temp_yawAng); lastYawReset_ms = lastCoreYawReset_ms; } return lastYawReset_ms; } // Returns the amount of NE position change due to the last position reset or core switch in metres // Returns the time of the last reset or 0 if no reset or core switch has ever occurred // Where there are multiple consumers, they must access this function on the same frame as each other uint32_t NavEKF3::getLastPosNorthEastReset(Vector2f &posDelta) { if (!core) { return 0; } posDelta.zero(); // Do the conversion to msec in one place uint32_t now_time_ms = imuSampleTime_us / 1000; // The last time we switched to the current primary core is the first reset event uint32_t lastPosReset_ms = pos_reset_data.last_primary_change; // There has been a change in the primary core that the controller has not consumed // allow for multiple consumers on the same frame if (pos_reset_data.core_changed || pos_reset_data.last_function_call == now_time_ms) { posDelta = pos_reset_data.core_delta; pos_reset_data.core_changed = false; } // Record last time controller got the position reset pos_reset_data.last_function_call = now_time_ms; // There has been a reset inside the core since we switched so update the time and delta Vector2f tempPosDelta; uint32_t lastCorePosReset_ms = core[primary].getLastPosNorthEastReset(tempPosDelta); if (lastCorePosReset_ms > lastPosReset_ms) { posDelta = posDelta + tempPosDelta; lastPosReset_ms = lastCorePosReset_ms; } return lastPosReset_ms; } // return the amount of NE velocity change due to the last velocity reset in metres/sec // returns the time of the last reset or 0 if no reset has ever occurred uint32_t NavEKF3::getLastVelNorthEastReset(Vector2f &vel) const { if (!core) { return 0; } return core[primary].getLastVelNorthEastReset(vel); } // report the reason for why the backend is refusing to initialise const char *NavEKF3::prearm_failure_reason(void) const { if (!core) { return nullptr; } return core[primary].prearm_failure_reason(); } // Returns the amount of vertical position change due to the last reset or core switch in metres // Returns the time of the last reset or 0 if no reset or core switch has ever occurred // Where there are multiple consumers, they must access this function on the same frame as each other uint32_t NavEKF3::getLastPosDownReset(float &posDelta) { if (!core) { return 0; } posDelta = 0.0f; // Do the conversion to msec in one place uint32_t now_time_ms = imuSampleTime_us / 1000; // The last time we switched to the current primary core is the first reset event uint32_t lastPosReset_ms = pos_down_reset_data.last_primary_change; // There has been a change in the primary core that the controller has not consumed // allow for multiple consumers on the same frame if (pos_down_reset_data.core_changed || pos_down_reset_data.last_function_call == now_time_ms) { posDelta = pos_down_reset_data.core_delta; pos_down_reset_data.core_changed = false; } // Record last time controller got the position reset pos_down_reset_data.last_function_call = now_time_ms; // There has been a reset inside the core since we switched so update the time and delta float tempPosDelta; uint32_t lastCorePosReset_ms = core[primary].getLastPosDownReset(tempPosDelta); if (lastCorePosReset_ms > lastPosReset_ms) { posDelta += tempPosDelta; lastPosReset_ms = lastCorePosReset_ms; } return lastPosReset_ms; } // update the yaw reset data to capture changes due to a lane switch void NavEKF3::updateLaneSwitchYawResetData(uint8_t new_primary, uint8_t old_primary) { Vector3f eulers_old_primary, eulers_new_primary; float old_yaw_delta; // If core yaw reset data has been consumed reset delta to zero if (!yaw_reset_data.core_changed) { yaw_reset_data.core_delta = 0; } // If current primary has reset yaw after controller got it, add it to the delta if (core[old_primary].getLastYawResetAngle(old_yaw_delta) > yaw_reset_data.last_function_call) { yaw_reset_data.core_delta += old_yaw_delta; } // Record the yaw delta between current core and new primary core and the timestamp of the core change // Add current delta in case it hasn't been consumed yet core[old_primary].getEulerAngles(eulers_old_primary); core[new_primary].getEulerAngles(eulers_new_primary); yaw_reset_data.core_delta = wrap_PI(eulers_new_primary.z - eulers_old_primary.z + yaw_reset_data.core_delta); yaw_reset_data.last_primary_change = imuSampleTime_us / 1000; yaw_reset_data.core_changed = true; } // update the position reset data to capture changes due to a lane switch void NavEKF3::updateLaneSwitchPosResetData(uint8_t new_primary, uint8_t old_primary) { Vector2f pos_old_primary, pos_new_primary, old_pos_delta; // If core position reset data has been consumed reset delta to zero if (!pos_reset_data.core_changed) { pos_reset_data.core_delta.zero(); } // If current primary has reset position after controller got it, add it to the delta if (core[old_primary].getLastPosNorthEastReset(old_pos_delta) > pos_reset_data.last_function_call) { pos_reset_data.core_delta += old_pos_delta; } // Record the position delta between current core and new primary core and the timestamp of the core change // Add current delta in case it hasn't been consumed yet core[old_primary].getPosNE(pos_old_primary); core[new_primary].getPosNE(pos_new_primary); pos_reset_data.core_delta = pos_new_primary - pos_old_primary + pos_reset_data.core_delta; pos_reset_data.last_primary_change = imuSampleTime_us / 1000; pos_reset_data.core_changed = true; } // Update the vertical position reset data to capture changes due to a core switch // This should be called after the decision to switch cores has been made, but before the // new primary EKF update has been run void NavEKF3::updateLaneSwitchPosDownResetData(uint8_t new_primary, uint8_t old_primary) { float posDownOldPrimary, posDownNewPrimary, oldPosDownDelta; // If core position reset data has been consumed reset delta to zero if (!pos_down_reset_data.core_changed) { pos_down_reset_data.core_delta = 0.0f; } // If current primary has reset position after controller got it, add it to the delta if (core[old_primary].getLastPosDownReset(oldPosDownDelta) > pos_down_reset_data.last_function_call) { pos_down_reset_data.core_delta += oldPosDownDelta; } // Record the position delta between current core and new primary core and the timestamp of the core change // Add current delta in case it hasn't been consumed yet core[old_primary].getPosD(posDownOldPrimary); core[new_primary].getPosD(posDownNewPrimary); pos_down_reset_data.core_delta = posDownNewPrimary - posDownOldPrimary + pos_down_reset_data.core_delta; pos_down_reset_data.last_primary_change = imuSampleTime_us / 1000; pos_down_reset_data.core_changed = true; } #endif //HAL_CPU_CLASS