/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andy Piper and the betaflight team */ #include #include "AP_HAL_ChibiOS.h" #if HAL_WITH_DSP #include #include #include #include "DSP.h" #include using namespace ChibiOS; #if DEBUG_FFT #define TIMER_START(timer) \ void *istate = hal.scheduler->disable_interrupts_save(); \ uint32_t timer##now = AP_HAL::micros() #define TIMER_END(timer) timer.time(timer##now); \ hal.scheduler->restore_interrupts(istate) #else #define TIMER_START(timer) #define TIMER_END(timer) #endif #define TICK_CYCLE 10 extern const AP_HAL::HAL& hal; // The algorithms originally came from betaflight but are now substantially modified based on theory and experiment. // https://holometer.fnal.gov/GH_FFT.pdf "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), // including a comprehensive list of window functions and some new flat-top windows." - Heinzel et. al is a great reference // for understanding the underlying theory although we do not use spectral density here since time resolution is equally // important as frequency resolution. Referred to as [Heinz] throughout the code. // initialize the FFT state machine AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t sliding_window_size) { DSP::FFTWindowStateARM* fft = NEW_NOTHROW DSP::FFTWindowStateARM(window_size, sample_rate, sliding_window_size); if (fft == nullptr || fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr || fft->_derivative_freq_bins == nullptr) { delete fft; return nullptr; } return fft; } // start an FFT analysis void DSP::fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) { step_hanning((FFTWindowStateARM*)state, samples, advance); } // perform remaining steps of an FFT analysis uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) { FFTWindowStateARM* fft = (FFTWindowStateARM*)state; step_arm_cfft_f32(fft); step_bitreversal(fft); step_stage_rfft_f32(fft); step_arm_cmplx_mag_f32(fft, start_bin, end_bin, noise_att_cutoff); return step_calc_frequencies_f32(fft, start_bin, end_bin); } // create an instance of the FFT state machine DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate, uint8_t sliding_window_size) : AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate, sliding_window_size) { if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) { GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for window %u for DSP", unsigned(sizeof(float) * (window_size * 3 + 2)), unsigned(window_size)); return; } // initialize the ARM data structure. // it's important not to use arm_rfft_fast_init_f32() as this links all of the twiddle tables // by being selective we save 70k in text space switch (window_size) { case 32: arm_rfft_32_fast_init_f32(&_fft_instance); break; case 64: arm_rfft_64_fast_init_f32(&_fft_instance); break; case 128: arm_rfft_128_fast_init_f32(&_fft_instance); break; case 256: arm_rfft_256_fast_init_f32(&_fft_instance); break; #if defined(STM32H7) // Don't pull in the larger FFT tables unless we have to case 512: arm_rfft_512_fast_init_f32(&_fft_instance); break; case 1024: arm_rfft_1024_fast_init_f32(&_fft_instance); break; #endif } } DSP::FFTWindowStateARM::~FFTWindowStateARM() {} extern "C" { void stage_rfft_f32(arm_rfft_fast_instance_f32 *S, float32_t *p, float32_t *pOut); void arm_cfft_radix8by2_f32(arm_cfft_instance_f32 *S, float32_t *p1); void arm_cfft_radix8by4_f32(arm_cfft_instance_f32 *S, float32_t *p1); void arm_radix8_butterfly_f32(float32_t *pSrc, uint16_t fftLen, const float32_t *pCoef, uint16_t twidCoefModifier); void arm_bitreversal_32(uint32_t *pSrc, const uint16_t bitRevLen, const uint16_t *pBitRevTable); } // step 1: filter the incoming samples through a Hanning window void DSP::step_hanning(FFTWindowStateARM* fft, FloatBuffer& samples, uint16_t advance) { TIMER_START(_hanning_timer); // 5us // apply hanning window to gyro samples and store result in _freq_bins // hanning starts and ends with 0, could be skipped for minor speed improvement samples.peek(&fft->_freq_bins[0], fft->_window_size); // the caller ensures we get a full buffer of samples samples.advance(advance); arm_mult_f32(&fft->_freq_bins[0], &fft->_hanning_window[0], &fft->_freq_bins[0], fft->_window_size); TIMER_END(_hanning_timer); } // step 2: guts of complex fft processing void DSP::step_arm_cfft_f32(FFTWindowStateARM* fft) { arm_cfft_instance_f32 *Sint = &(fft->_fft_instance.Sint); Sint->fftLen = fft->_fft_instance.fftLenRFFT / 2; TIMER_START(_arm_cfft_f32_timer); switch (fft->_bin_count) { case 16: // window 32 // 16us (BF) // 5us F7, 7us F4, 8us H7 case 128: // window 256 // 37us F7, 81us F4, 17us H7 arm_cfft_radix8by2_f32(Sint, fft->_freq_bins); break; case 32: // window 64 // 35us (BF) // 10us F7, 24us F4 case 256: // window 512 // 66us F7, 174us F4, 37us H7 arm_cfft_radix8by4_f32(Sint, fft->_freq_bins); break; case 64: // window 128 // 70us BF // 21us F7, 34us F4 case 512: // window 1024 // 152us F7, 73us H7 arm_radix8_butterfly_f32(fft->_freq_bins, fft->_bin_count, Sint->pTwiddle, 1); break; } TIMER_END(_arm_cfft_f32_timer); } // step 3: reverse the bits of the output void DSP::step_bitreversal(FFTWindowStateARM* fft) { TIMER_START(_bitreversal_timer); // 6us (BF) // 32 - 2us F7, 3us F4, 1us H7 // 64 - 3us F7, 6us F4 // 128 - 4us F7, 9us F4 // 256 - 10us F7, 20us F4, 5us H7 // 512 - 22us F7, 54us F4, 15us H7 // 1024 - 42us F7, 15us H7 arm_bitreversal_32((uint32_t *)fft->_freq_bins, fft->_fft_instance.Sint.bitRevLength, fft->_fft_instance.Sint.pBitRevTable); TIMER_END(_bitreversal_timer); } // step 4: convert from complex to real data void DSP::step_stage_rfft_f32(FFTWindowStateARM* fft) { TIMER_START(_stage_rfft_f32_timer); // 14us (BF) // 32 - 2us F7, 5us F4, 2us H7 // 64 - 5us F7, 16us F4 // 128 - 17us F7, 26us F4 // 256 - 21us F7, 70us F4, 9us H7 // 512 - 35us F7, 71us F4, 17us H7 // 1024 - 76us F7, 33us H7 // this does not work in place => _freq_bins AND _rfft_data needed stage_rfft_f32(&fft->_fft_instance, fft->_freq_bins, fft->_rfft_data); TIMER_END(_stage_rfft_f32_timer); } // step 5: find the magnitudes of the complex data void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) { TIMER_START(_arm_cmplx_mag_f32_timer); // 8us (BF) // 32 - 4us F7, 5us F4, 5us H7 // 64 - 7us F7, 13us F4 // 128 - 14us F7, 17us F4 // 256 - 29us F7, 28us F4, 7us H7 // 512 - 55us F7, 93us F4, 13us H7 // 1024 - 131us F7, 25us H7 // General case for the magnitudes - see https://stackoverflow.com/questions/42299932/dsp-libraries-rfft-strange-results // The frequency of each of those frequency components are given by k*fs/N arm_cmplx_mag_squared_f32(&fft->_rfft_data[2], &fft->_freq_bins[1], fft->_bin_count - 1); fft->_freq_bins[0] = sq(fft->_rfft_data[0]); // DC fft->_freq_bins[fft->_bin_count] = sq(fft->_rfft_data[1]); // Nyquist fft->_rfft_data[fft->_window_size] = fft->_rfft_data[1]; // Nyquist for the interpolator fft->_rfft_data[fft->_window_size + 1] = 0; step_cmplx_mag(fft, start_bin, end_bin, noise_att_cutoff); TIMER_END(_arm_cmplx_mag_f32_timer); } // step 6: find the bin with the highest energy and interpolate the required frequency uint16_t DSP::step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin) { TIMER_START(_step_calc_frequencies); // 4us H7 step_calc_frequencies(fft, start_bin, end_bin); TIMER_END(_step_calc_frequencies); #if DEBUG_FFT _output_count++; // outputs at approx 1hz if (_output_count % 400 == 0) { GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "FFT(us): t1:%lu,t2:%lu,t3:%lu,t4:%lu,t5:%lu,t6:%lu", _hanning_timer._timer_avg, _arm_cfft_f32_timer._timer_avg, _bitreversal_timer._timer_avg, _stage_rfft_f32_timer._timer_avg, _arm_cmplx_mag_f32_timer._timer_avg, _step_calc_frequencies._timer_avg); } #endif return fft->_peak_data[CENTER]._bin; } static const float PI_N = M_PI / 32.0f; static const float CANDAN_FACTOR = tanf(PI_N) / PI_N; // Interpolate center frequency using http://users.metu.edu.tr/ccandan//pub_dir/FineDopplerEst_IEEE_SPL_June2011.pdf // This is slightly less accurate than Quinn, but much cheaper to calculate float DSP::calculate_candans_estimator(const FFTWindowStateARM* fft, uint16_t k_max) const { if (k_max <= 1 || k_max == fft->_bin_count) { return 0.0f; } const uint16_t k_m1 = (k_max - 1) * 2; const uint16_t k_p1 = (k_max + 1) * 2; const uint16_t k = k_max * 2; const float npr = fft->_rfft_data[k_m1] - fft->_rfft_data[k_p1]; const float npc = fft->_rfft_data[k_m1 + 1] - fft->_rfft_data[k_p1 + 1]; const float dpr = 2.0f * fft->_rfft_data[k] - fft->_rfft_data[k_m1] - fft->_rfft_data[k_p1]; const float dpc = 2.0f * fft->_rfft_data[k + 1] - fft->_rfft_data[k_m1 + 1] - fft->_rfft_data[k_p1 + 1]; const float realn = npr * dpr + npc * dpc; const float reald = dpr * dpr + dpc * dpc; // sanity check if (is_zero(reald)) { return 0.0f; } float d = CANDAN_FACTOR * (realn / reald); // -0.5 < d < 0.5 which is the fraction of the sample spacing about the center element return constrain_float(d, -0.5f, 0.5f); } #if DEBUG_FFT void DSP::StepTimer::time(uint32_t start) { _timer_total += (AP_HAL::micros() - start); _time_ticks = (_time_ticks + 1) % TICK_CYCLE; if (_time_ticks == 0) { _timer_avg = _timer_total / TICK_CYCLE; _timer_total = 0; } } #endif #endif