#include "AP_RangeFinder_DroneCAN.h" #if AP_RANGEFINDER_DRONECAN_ENABLED #include <AP_HAL/AP_HAL.h> #include <AP_CANManager/AP_CANManager.h> #include <AP_DroneCAN/AP_DroneCAN.h> #include <GCS_MAVLink/GCS.h> #include <AP_BoardConfig/AP_BoardConfig.h> extern const AP_HAL::HAL& hal; #define debug_range_finder_uavcan(level_debug, can_driver, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(can_driver)) { hal.console->printf(fmt, ##args); }} while (0) //links the rangefinder uavcan message to this backend void AP_RangeFinder_DroneCAN::subscribe_msgs(AP_DroneCAN* ap_dronecan) { if (ap_dronecan == nullptr) { return; } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_measurement, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("measurement_sub"); } } //Method to find the backend relating to the node id AP_RangeFinder_DroneCAN* AP_RangeFinder_DroneCAN::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id, uint8_t address, bool create_new) { if (ap_dronecan == nullptr) { return nullptr; } AP_RangeFinder_DroneCAN* driver = nullptr; RangeFinder &frontend = *AP::rangefinder(); //Scan through the Rangefinder params to find UAVCAN RFND with matching address. for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) { if ((RangeFinder::Type)frontend.params[i].type.get() == RangeFinder::Type::UAVCAN && frontend.params[i].address == address) { driver = (AP_RangeFinder_DroneCAN*)frontend.drivers[i]; } //Double check if the driver was initialised as UAVCAN Type if (driver != nullptr && (driver->_backend_type == RangeFinder::Type::UAVCAN)) { if (driver->_ap_dronecan == ap_dronecan && driver->_node_id == node_id) { return driver; } else { //we found a possible duplicate addressed sensor //we return nothing in such scenario return nullptr; } } } if (create_new) { for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) { if ((RangeFinder::Type)frontend.params[i].type.get() == RangeFinder::Type::UAVCAN && frontend.params[i].address == address) { WITH_SEMAPHORE(frontend.detect_sem); if (frontend.drivers[i] != nullptr) { //we probably initialised this driver as something else, reboot is required for setting //it up as UAVCAN type return nullptr; } frontend.drivers[i] = NEW_NOTHROW AP_RangeFinder_DroneCAN(frontend.state[i], frontend.params[i]); driver = (AP_RangeFinder_DroneCAN*)frontend.drivers[i]; if (driver == nullptr) { break; } GCS_SEND_TEXT(MAV_SEVERITY_INFO, "RangeFinder[%u]: added DroneCAN node %u addr %u", unsigned(i), unsigned(node_id), unsigned(address)); //Assign node id and respective uavcan driver, for identification if (driver->_ap_dronecan == nullptr) { driver->_ap_dronecan = ap_dronecan; driver->_node_id = node_id; break; } } } } return driver; } //Called from frontend to update with the readings received by handler void AP_RangeFinder_DroneCAN::update() { WITH_SEMAPHORE(_sem); if ((AP_HAL::millis() - _last_reading_ms) > 500) { //if data is older than 500ms, report NoData set_status(RangeFinder::Status::NoData); } else if (_status == RangeFinder::Status::Good && new_data) { //copy over states state.distance_m = _distance_cm * 0.01f; state.last_reading_ms = _last_reading_ms; update_status(); new_data = false; } else if (_status != RangeFinder::Status::Good) { //handle additional states received by measurement handler set_status(_status); } } //RangeFinder message handler void AP_RangeFinder_DroneCAN::handle_measurement(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_range_sensor_Measurement &msg) { //fetch the matching uavcan driver, node id and sensor id backend instance AP_RangeFinder_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, msg.sensor_id, true); if (driver == nullptr) { return; } WITH_SEMAPHORE(driver->_sem); switch (msg.reading_type) { case UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_VALID_RANGE: { //update the states in backend instance driver->_distance_cm = msg.range*100.0f; driver->_last_reading_ms = AP_HAL::millis(); driver->_status = RangeFinder::Status::Good; driver->new_data = true; break; } //Additional states supported by RFND message case UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_TOO_CLOSE: { driver->_last_reading_ms = AP_HAL::millis(); driver->_status = RangeFinder::Status::OutOfRangeLow; break; } case UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_TOO_FAR: { driver->_last_reading_ms = AP_HAL::millis(); driver->_status = RangeFinder::Status::OutOfRangeHigh; break; } default: { break; } } //copy over the sensor type of Rangefinder switch (msg.sensor_type) { case UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_SONAR: { driver->_sensor_type = MAV_DISTANCE_SENSOR_ULTRASOUND; break; } case UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_LIDAR: { driver->_sensor_type = MAV_DISTANCE_SENSOR_LASER; break; } case UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_RADAR: { driver->_sensor_type = MAV_DISTANCE_SENSOR_RADAR; break; } default: { driver->_sensor_type = MAV_DISTANCE_SENSOR_UNKNOWN; break; } } } #endif // AP_RANGEFINDER_DRONECAN_ENABLED