/*
* matrix3.cpp
* Copyright (C) Andrew Tridgell 2012
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*/
#pragma GCC optimize("O2")
#include "AP_Math.h"
// create a rotation matrix given some euler angles
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
template
void Matrix3::from_euler(T roll, T pitch, T yaw)
{
const T cp = cosF(pitch);
const T sp = sinF(pitch);
const T sr = sinF(roll);
const T cr = cosF(roll);
const T sy = sinF(yaw);
const T cy = cosF(yaw);
a.x = cp * cy;
a.y = (sr * sp * cy) - (cr * sy);
a.z = (cr * sp * cy) + (sr * sy);
b.x = cp * sy;
b.y = (sr * sp * sy) + (cr * cy);
b.z = (cr * sp * sy) - (sr * cy);
c.x = -sp;
c.y = sr * cp;
c.z = cr * cp;
}
// calculate euler angles from a rotation matrix
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
template
void Matrix3::to_euler(T *roll, T *pitch, T *yaw) const
{
if (pitch != nullptr) {
*pitch = -safe_asin(c.x);
}
if (roll != nullptr) {
*roll = atan2F(c.y, c.z);
}
if (yaw != nullptr) {
*yaw = atan2F(b.x, a.x);
}
}
template
void Matrix3::from_rotation(enum Rotation rotation)
{
(*this).a = {1,0,0};
(*this).b = {0,1,0};
(*this).c = {0,0,1};
(*this).a.rotate(rotation);
(*this).b.rotate(rotation);
(*this).c.rotate(rotation);
(*this).transpose();
}
/*
calculate Euler angles (312 convention) for the matrix.
See http://www.atacolorado.com/eulersequences.doc
vector is returned in r, p, y order
*/
template
Vector3 Matrix3::to_euler312() const
{
return Vector3(asinF(c.y),
atan2F(-c.x, c.z),
atan2F(-a.y, b.y));
}
/*
fill the matrix from Euler angles in radians in 312 convention
*/
template
void Matrix3::from_euler312(T roll, T pitch, T yaw)
{
const T c3 = cosF(pitch);
const T s3 = sinF(pitch);
const T s2 = sinF(roll);
const T c2 = cosF(roll);
const T s1 = sinF(yaw);
const T c1 = cosF(yaw);
a.x = c1 * c3 - s1 * s2 * s3;
b.y = c1 * c2;
c.z = c3 * c2;
a.y = -c2*s1;
a.z = s3*c1 + c3*s2*s1;
b.x = c3*s1 + s3*s2*c1;
b.z = s1*s3 - s2*c1*c3;
c.x = -s3*c2;
c.y = s2;
}
// apply an additional rotation from a body frame gyro vector
// to a rotation matrix.
template
void Matrix3::rotate(const Vector3 &g)
{
(*this) += Matrix3{
a.y * g.z - a.z * g.y, a.z * g.x - a.x * g.z, a.x * g.y - a.y * g.x,
b.y * g.z - b.z * g.y, b.z * g.x - b.x * g.z, b.x * g.y - b.y * g.x,
c.y * g.z - c.z * g.y, c.z * g.x - c.x * g.z, c.x * g.y - c.y * g.x
};
}
/*
re-normalise a rotation matrix
*/
template
void Matrix3::normalize(void)
{
const T error = a * b;
const Vector3 t0 = a - (b * (0.5f * error));
const Vector3 t1 = b - (a * (0.5f * error));
const Vector3 t2 = t0 % t1;
a = t0 * (1.0f / t0.length());
b = t1 * (1.0f / t1.length());
c = t2 * (1.0f / t2.length());
}
// multiplication by a vector
template
Vector3 Matrix3::operator *(const Vector3 &v) const
{
return Vector3(a.x * v.x + a.y * v.y + a.z * v.z,
b.x * v.x + b.y * v.y + b.z * v.z,
c.x * v.x + c.y * v.y + c.z * v.z);
}
// multiplication by a vector, extracting only the xy components
template
Vector2 Matrix3::mulXY(const Vector3 &v) const
{
return Vector2(a.x * v.x + a.y * v.y + a.z * v.z,
b.x * v.x + b.y * v.y + b.z * v.z);
}
// multiplication of transpose by a vector
template
Vector3 Matrix3::mul_transpose(const Vector3 &v) const
{
return Vector3(a.x * v.x + b.x * v.y + c.x * v.z,
a.y * v.x + b.y * v.y + c.y * v.z,
a.z * v.x + b.z * v.y + c.z * v.z);
}
// multiplication by another Matrix3
template
Matrix3 Matrix3::operator *(const Matrix3 &m) const
{
Matrix3 temp (Vector3(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x,
a.x * m.a.y + a.y * m.b.y + a.z * m.c.y,
a.x * m.a.z + a.y * m.b.z + a.z * m.c.z),
Vector3(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x,
b.x * m.a.y + b.y * m.b.y + b.z * m.c.y,
b.x * m.a.z + b.y * m.b.z + b.z * m.c.z),
Vector3(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x,
c.x * m.a.y + c.y * m.b.y + c.z * m.c.y,
c.x * m.a.z + c.y * m.b.z + c.z * m.c.z));
return temp;
}
template
Matrix3 Matrix3::transposed(void) const
{
return Matrix3(Vector3(a.x, b.x, c.x),
Vector3(a.y, b.y, c.y),
Vector3(a.z, b.z, c.z));
}
template
T Matrix3::det() const
{
return a.x * (b.y * c.z - b.z * c.y) +
a.y * (b.z * c.x - b.x * c.z) +
a.z * (b.x * c.y - b.y * c.x);
}
template
bool Matrix3::inverse(Matrix3& inv) const
{
const T d = det();
if (is_zero(d)) {
return false;
}
inv.a.x = (b.y * c.z - c.y * b.z) / d;
inv.a.y = (a.z * c.y - a.y * c.z) / d;
inv.a.z = (a.y * b.z - a.z * b.y) / d;
inv.b.x = (b.z * c.x - b.x * c.z) / d;
inv.b.y = (a.x * c.z - a.z * c.x) / d;
inv.b.z = (b.x * a.z - a.x * b.z) / d;
inv.c.x = (b.x * c.y - c.x * b.y) / d;
inv.c.y = (c.x * a.y - a.x * c.y) / d;
inv.c.z = (a.x * b.y - b.x * a.y) / d;
return true;
}
template
bool Matrix3::invert()
{
Matrix3 inv;
bool success = inverse(inv);
if (success) {
*this = inv;
}
return success;
}
template
void Matrix3::zero(void)
{
a.x = a.y = a.z = 0;
b.x = b.y = b.z = 0;
c.x = c.y = c.z = 0;
}
// create rotation matrix for rotation about the vector v by angle theta
// See: http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/
template
void Matrix3::from_axis_angle(const Vector3 &v, T theta)
{
const T C = cosF(theta);
const T S = sinF(theta);
const T t = 1.0f - C;
const Vector3 normv = v.normalized();
const T x = normv.x;
const T y = normv.y;
const T z = normv.z;
a.x = t*x*x + C;
a.y = t*x*y - z*S;
a.z = t*x*z + y*S;
b.x = t*x*y + z*S;
b.y = t*y*y + C;
b.z = t*y*z - x*S;
c.x = t*x*z - y*S;
c.y = t*y*z + x*S;
c.z = t*z*z + C;
}
// define for float and double
template class Matrix3;
template class Matrix3;