// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- extern RC_Channel* rc_ch[8]; static void default_dead_zones() { g.rc_1.set_dead_zone(60); g.rc_2.set_dead_zone(60); #if FRAME_CONFIG == HELI_FRAME g.rc_3.set_dead_zone(20); g.rc_4.set_dead_zone(30); #else g.rc_3.set_dead_zone(60); g.rc_4.set_dead_zone(80); #endif } static void init_rc_in() { // set rc channel ranges g.rc_1.set_angle(MAX_INPUT_ROLL_ANGLE); g.rc_2.set_angle(MAX_INPUT_PITCH_ANGLE); #if FRAME_CONFIG == HELI_FRAME // we do not want to limit the movment of the heli's swash plate g.rc_3.set_range(0, 1000); #else g.rc_3.set_range(g.throttle_min, g.throttle_max); #endif g.rc_4.set_angle(4500); // reverse: CW = left // normal: CW = left??? g.rc_1.set_type(RC_CHANNEL_TYPE_ANGLE_RAW); g.rc_2.set_type(RC_CHANNEL_TYPE_ANGLE_RAW); g.rc_4.set_type(RC_CHANNEL_TYPE_ANGLE_RAW); rc_ch[CH_1] = &g.rc_1; rc_ch[CH_2] = &g.rc_2; rc_ch[CH_3] = &g.rc_3; rc_ch[CH_4] = &g.rc_4; rc_ch[CH_5] = &g.rc_5; rc_ch[CH_6] = &g.rc_6; rc_ch[CH_7] = &g.rc_7; rc_ch[CH_8] = &g.rc_8; //set auxiliary ranges g.rc_5.set_range(0,1000); g.rc_6.set_range(0,1000); g.rc_7.set_range(0,1000); g.rc_8.set_range(0,1000); #if MOUNT == ENABLED update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11); #endif } static void init_rc_out() { motors.set_update_rate(g.rc_speed); motors.set_frame_orientation(g.frame_orientation); motors.Init(); // motor initialisation motors.set_min_throttle(g.throttle_min); motors.set_max_throttle(g.throttle_max); for(uint8_t i = 0; i < 5; i++) { delay(20); read_radio(); } // we want the input to be scaled correctly g.rc_3.set_range_out(0,1000); // sanity check - prevent unconfigured radios from outputting if(g.rc_3.radio_min >= 1300) { g.rc_3.radio_min = g.rc_3.radio_in; } // we are full throttle if(g.rc_3.control_in >= (MAXIMUM_THROTTLE - 50)) { if(g.esc_calibrate == 0) { // we will enter esc_calibrate mode on next reboot g.esc_calibrate.set_and_save(1); // send minimum throttle out to ESC motors.output_min(); // display message on console cliSerial->printf_P(PSTR("Entering ESC Calibration: please restart APM.\n")); // block until we restart while(1) { delay(200); dancing_light(); } }else{ cliSerial->printf_P(PSTR("ESC Calibration active: passing throttle through to ESCs.\n")); // clear esc flag g.esc_calibrate.set_and_save(0); // pass through user throttle to escs init_esc(); } }else{ // did we abort the calibration? if(g.esc_calibrate == 1) g.esc_calibrate.set_and_save(0); // send miinimum throttle out to ESC output_min(); } #if TOY_EDF == ENABLED // add access to CH8 and CH6 APM_RC.enable_out(CH_8); APM_RC.enable_out(CH_6); #endif } void output_min() { // enable motors motors.enable(); motors.output_min(); } #define RADIO_FS_TIMEOUT_MS 2000 // 2 seconds static void read_radio() { static uint32_t last_update = 0; if (hal.rcin->valid() > 0) { last_update = millis(); ap_system.new_radio_frame = true; uint16_t periods[8]; hal.rcin->read(periods,8); g.rc_1.set_pwm(periods[0]); g.rc_2.set_pwm(periods[1]); set_throttle_and_failsafe(periods[2]); g.rc_4.set_pwm(periods[3]); g.rc_5.set_pwm(periods[4]); g.rc_6.set_pwm(periods[5]); g.rc_7.set_pwm(periods[6]); g.rc_8.set_pwm(periods[7]); #if FRAME_CONFIG != HELI_FRAME // limit our input to 800 so we can still pitch and roll g.rc_3.control_in = min(g.rc_3.control_in, MAXIMUM_THROTTLE); #endif }else{ uint32_t elapsed = millis() - last_update; // turn on throttle failsafe if no update from ppm encoder for 2 seconds if ((elapsed >= RADIO_FS_TIMEOUT_MS) && g.failsafe_throttle && motors.armed() && !ap.failsafe) { Log_Write_Error(ERROR_SUBSYSTEM_RADIO, ERROR_CODE_RADIO_LATE_FRAME); set_failsafe(true); } } } #define FS_COUNTER 3 static void set_throttle_and_failsafe(uint16_t throttle_pwm) { static int8_t failsafe_counter = 0; // if failsafe not enabled pass through throttle and exit if(g.failsafe_throttle == FS_THR_DISABLED) { g.rc_3.set_pwm(throttle_pwm); return; } //check for low throttle value if (throttle_pwm < (uint16_t)g.failsafe_throttle_value) { // if we are already in failsafe or motors not armed pass through throttle and exit if (ap.failsafe || !motors.armed()) { g.rc_3.set_pwm(throttle_pwm); return; } // check for 3 low throttle values // Note: we do not pass through the low throttle until 3 low throttle values are recieved failsafe_counter++; if( failsafe_counter >= FS_COUNTER ) { failsafe_counter = FS_COUNTER; // check to ensure we don't overflow the counter set_failsafe(true); g.rc_3.set_pwm(throttle_pwm); // pass through failsafe throttle } }else{ // we have a good throttle so reduce failsafe counter failsafe_counter--; if( failsafe_counter <= 0 ) { failsafe_counter = 0; // check to ensure we don't underflow the counter // disengage failsafe after three (nearly) consecutive valid throttle values if (ap.failsafe) { set_failsafe(false); } } // pass through throttle g.rc_3.set_pwm(throttle_pwm); } } static void trim_radio() { for (uint8_t i = 0; i < 30; i++) { read_radio(); } g.rc_1.trim(); // roll g.rc_2.trim(); // pitch g.rc_4.trim(); // yaw g.rc_1.save_eeprom(); g.rc_2.save_eeprom(); g.rc_4.save_eeprom(); }