/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ /* FRSky FPort implementation, with thanks to BetaFlight for specification and code reference */ #include "AP_RCProtocol_FPort.h" #include #include #include #include #include extern const AP_HAL::HAL& hal; #define FRAME_HEAD 0x7E #define FRAME_DLE 0x7D #define FRAME_XOR 0x20 #define FRAME_LEN_CONTROL 0x19 #define FRAME_LEN_DOWNLINK 0x08 #define MIN_FRAME_SIZE 12 #define MAX_CHANNELS 16 #define FLAGS_FAILSAFE_BIT 3 #define FLAGS_FRAMELOST_BIT 2 #define CHAN_SCALE_FACTOR ((2000.0 - 1000.0) / (1800.0 - 200.0)) #define CHAN_SCALE_OFFSET (int)(1000.0 - (CHAN_SCALE_FACTOR * 200.0 + 0.5f)) #define FPORT_TYPE_CONTROL 0 #define FPORT_TYPE_DOWNLINK 1 #define FPORT_PRIM_NULL 0x00 #define FPORT_PRIM_DATA 0x10 #define FPORT_PRIM_READ 0x30 #define FPORT_PRIM_WRITE 0x31 #define MAX_FPORT_CONSECUTIVE_FRAMES 2 struct PACKED FPort_Frame { uint8_t header; // 0x7E uint8_t len; // 0x19 for control, 0x08 for downlink uint8_t type; union { struct PACKED { uint16_t chan0 : 11; uint16_t chan1 : 11; uint16_t chan2 : 11; uint16_t chan3 : 11; uint16_t chan4 : 11; uint16_t chan5 : 11; uint16_t chan6 : 11; uint16_t chan7 : 11; uint16_t chan8 : 11; uint16_t chan9 : 11; uint16_t chan10 : 11; uint16_t chan11 : 11; uint16_t chan12 : 11; uint16_t chan13 : 11; uint16_t chan14 : 11; uint16_t chan15 : 11; uint8_t flags; uint8_t rssi; uint8_t crc; uint8_t end; } control; struct PACKED { uint8_t prim; uint16_t appid; uint8_t data[4]; uint8_t crc; uint8_t end; } downlink; }; }; static_assert(sizeof(FPort_Frame) == FPORT_CONTROL_FRAME_SIZE, "FPort_Frame incorrect size"); // constructor AP_RCProtocol_FPort::AP_RCProtocol_FPort(AP_RCProtocol &_frontend, bool _inverted) : AP_RCProtocol_Backend(_frontend), inverted(_inverted) {} // decode a full FPort control frame void AP_RCProtocol_FPort::decode_control(const FPort_Frame &frame) { uint16_t values[MAX_CHANNELS]; // pull out of bitfields values[0] = frame.control.chan0; values[1] = frame.control.chan1; values[2] = frame.control.chan2; values[3] = frame.control.chan3; values[4] = frame.control.chan4; values[5] = frame.control.chan5; values[6] = frame.control.chan6; values[7] = frame.control.chan7; values[8] = frame.control.chan8; values[9] = frame.control.chan9; values[10] = frame.control.chan10; values[11] = frame.control.chan11; values[12] = frame.control.chan12; values[13] = frame.control.chan13; values[14] = frame.control.chan14; values[15] = frame.control.chan15; // scale values for (uint8_t i=0; i= MAX_FPORT_CONSECUTIVE_FRAMES) { consecutive_telemetry_frame_count = 0; return; } else { consecutive_telemetry_frame_count++; } break; case FPORT_PRIM_READ: case FPORT_PRIM_WRITE: // do not respond to 0x30 and 0x31 return; } /* if we are getting FPORT over a UART then we can ask the FrSky telem library for some passthrough data to send back, enabling telemetry on the receiver via the same uart pin as we use for incoming RC frames */ AP_HAL::UARTDriver *uart = get_UART(); if (!uart) { return; } /* get SPort data from FRSky_Telem or send a null frame. We save the data to a variable so in case we're late we'll send it in the next call, this prevents corruption of status text messages */ if (!telem_data.available) { if (!AP_Frsky_Telem::get_telem_data(telem_data.frame, telem_data.appid, telem_data.data)) { // nothing to send, send a null frame telem_data.frame = 0x00; telem_data.appid = 0x00; telem_data.data = 0x00; } telem_data.available = true; } /* check that we haven't been too slow in responding to the new UART data. If we respond too late then we will corrupt the next incoming control frame */ uint64_t tend = uart->receive_time_constraint_us(1); uint64_t now = AP_HAL::micros64(); uint64_t tdelay = now - tend; if (tdelay > 2500) { // we've been too slow in responding return; } uint8_t buf[10]; buf[0] = 0x08; buf[1] = 0x81; buf[2] = telem_data.frame; buf[3] = telem_data.appid & 0xFF; buf[4] = telem_data.appid >> 8; memcpy(&buf[5], &telem_data.data, 4); uint16_t sum = 0; for (uint8_t i=0; i> 8; sum &= 0xFF; } sum = 0xff - ((sum & 0xff) + (sum >> 8)); buf[9] = (uint8_t)sum; // perform byte stuffing per FPort spec uint8_t len = 0; uint8_t buf2[sizeof(buf)*2+1]; if (rc().fport_pad()) { // this padding helps on some uarts that have hw pullups buf2[len++] = 0xff; } for (uint8_t i=0; iwrite(buf2, len); // get fresh telem_data in the next call telem_data.available = false; #endif } /* process a FPort input pulse of the given width */ void AP_RCProtocol_FPort::process_pulse(uint32_t width_s0, uint32_t width_s1) { if (have_UART()) { // if we can use a UART we would much prefer to, as it allows // us to send SPORT data out return; } uint32_t w0 = width_s0; uint32_t w1 = width_s1; if (inverted) { w0 = saved_width; w1 = width_s0; saved_width = width_s1; } uint8_t b; if (ss.process_pulse(w0, w1, b)) { _process_byte(ss.get_byte_timestamp_us(), b); } } // support byte input void AP_RCProtocol_FPort::_process_byte(uint32_t timestamp_us, uint8_t b) { const bool have_frame_gap = (timestamp_us - byte_input.last_byte_us >= 2000U); byte_input.last_byte_us = timestamp_us; if (have_frame_gap) { // if we have a frame gap then this must be the start of a new // frame byte_input.ofs = 0; byte_input.got_DLE = false; } if (b != FRAME_HEAD && byte_input.ofs == 0) { // definately not FPort, missing header byte return; } // handle byte-stuffing decode if (byte_input.got_DLE) { b ^= FRAME_XOR; byte_input.got_DLE = false; } else if (b == FRAME_DLE) { byte_input.got_DLE = true; return; } byte_input.buf[byte_input.ofs++] = b; const FPort_Frame *frame = (const FPort_Frame *)&byte_input.buf[0]; if (byte_input.ofs == 2) { // check for valid lengths if (frame->len != FRAME_LEN_CONTROL && frame->len != FRAME_LEN_DOWNLINK) { // invalid, reset goto reset; } } if (byte_input.ofs == 3) { // check for valid lengths if ((frame->type == FPORT_TYPE_CONTROL && frame->len != FRAME_LEN_CONTROL) || (frame->type == FPORT_TYPE_DOWNLINK && frame->len != FRAME_LEN_DOWNLINK)) { goto reset; } if (frame->type != FPORT_TYPE_CONTROL && frame->type != FPORT_TYPE_DOWNLINK) { // invalid type goto reset; } } if (frame->type == FPORT_TYPE_CONTROL && byte_input.ofs == FRAME_LEN_CONTROL + 4) { if (check_checksum()) { decode_control(*frame); } goto reset; } else if (frame->type == FPORT_TYPE_DOWNLINK && byte_input.ofs == FRAME_LEN_DOWNLINK + 4) { if (check_checksum()) { decode_downlink(*frame); } goto reset; } if (byte_input.ofs == sizeof(byte_input.buf)) { goto reset; } return; reset: byte_input.ofs = 0; byte_input.got_DLE = false; } // check checksum byte bool AP_RCProtocol_FPort::check_checksum(void) { uint8_t len = byte_input.buf[1]+2; const uint8_t *b = &byte_input.buf[1]; uint16_t sum = 0; for (uint8_t i=0; i> 8; sum &= 0xFF; } sum = (sum & 0xff) + (sum >> 8); return sum == 0xff; } // support byte input void AP_RCProtocol_FPort::process_byte(uint8_t b, uint32_t baudrate) { if (baudrate != 115200) { return; } _process_byte(AP_HAL::micros(), b); }