#include "Sub.h" #include "version.h" /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ static void mavlink_delay_cb_static() { sub.mavlink_delay_cb(); } static void failsafe_check_static() { sub.mainloop_failsafe_check(); } void Sub::init_ardupilot() { // initialise serial port serial_manager.init_console(); hal.console->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", (unsigned)hal.util->available_memory()); // load parameters from EEPROM load_parameters(); BoardConfig.init(); // initialise serial port serial_manager.init(); // init cargo gripper #if GRIPPER_ENABLED == ENABLED g2.gripper.init(); #endif // initialise notify system notify.init(true); // initialise battery monitor battery.init(); barometer.init(); celsius.init(); // Register the mavlink service callback. This will run // anytime there are more than 5ms remaining in a call to // hal.scheduler->delay. hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); // setup telem slots with serial ports for (uint8_t i = 0; i < MAVLINK_COMM_NUM_BUFFERS; i++) { gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i); } // identify ourselves correctly with the ground station mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif gcs().set_dataflash(&DataFlash); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up motors and output to escs init_joystick(); // joystick initialization // initialise which outputs Servo and Relay events can use ServoRelayEvents.set_channel_mask(~motors.get_motor_mask()); relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // Do GPS init gps.init(&DataFlash, serial_manager); if (g.compass_enabled) { init_compass(); } #if OPTFLOW == ENABLED // make optflow available to AHRS ahrs.set_optflow(&optflow); #endif // init Location class Location_Class::set_ahrs(&ahrs); #if AP_TERRAIN_AVAILABLE && AC_TERRAIN Location_Class::set_terrain(&terrain); wp_nav.set_terrain(&terrain); #endif #if AVOIDANCE_ENABLED == ENABLED wp_nav.set_avoidance(&avoid); #endif pos_control.set_dt(MAIN_LOOP_SECONDS); // init the optical flow sensor #if OPTFLOW == ENABLED init_optflow(); #endif #if MOUNT == ENABLED // initialise camera mount camera_mount.init(&DataFlash, serial_manager); #endif #ifdef USERHOOK_INIT USERHOOK_INIT #endif // Init baro and determine if we have external (depth) pressure sensor init_barometer(false); barometer.update(); for (uint8_t i = 0; i < barometer.num_instances(); i++) { if (barometer.get_type(i) == AP_Baro::BARO_TYPE_WATER) { barometer.set_primary_baro(i); depth_sensor_idx = i; ap.depth_sensor_present = true; sensor_health.depth = barometer.healthy(depth_sensor_idx); // initialize health flag break; // Go with the first one we find } } if (!ap.depth_sensor_present) { // We only have onboard baro // No external underwater depth sensor detected barometer.set_primary_baro(0); EKF2.set_baro_alt_noise(10.0f); // Readings won't correspond with rest of INS EKF3.set_baro_alt_noise(10.0f); } else { EKF2.set_baro_alt_noise(0.1f); EKF3.set_baro_alt_noise(0.1f); } leak_detector.init(); last_pilot_heading = ahrs.yaw_sensor; // initialise rangefinder #if RANGEFINDER_ENABLED == ENABLED init_rangefinder(); #endif // initialise AP_RPM library #if RPM_ENABLED == ENABLED rpm_sensor.init(); #endif // initialise mission library mission.init(); // initialise DataFlash library DataFlash.set_mission(&mission); DataFlash.setVehicle_Startup_Log_Writer(FUNCTOR_BIND(&sub, &Sub::Log_Write_Vehicle_Startup_Messages, void)); startup_INS_ground(); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe mainloop_failsafe_enable(); ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); ins.set_dataflash(&DataFlash); // init vehicle capabilties init_capabilities(); if (DataFlash.log_while_disarmed()) { start_logging(); // create a new log if necessary } // disable safety if requested BoardConfig.init_safety(); hal.console->print("\nInit complete"); // flag that initialisation has completed ap.initialised = true; } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** void Sub::startup_INS_ground() { // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); ahrs.set_vehicle_class(AHRS_VEHICLE_SUBMARINE); // Warm up and calibrate gyro offsets ins.init(scheduler.get_loop_rate_hz()); // reset ahrs including gyro bias ahrs.reset(); } // calibrate gyros - returns true if succesfully calibrated bool Sub::calibrate_gyros() { // gyro offset calibration sub.ins.init_gyro(); // reset ahrs gyro bias if (sub.ins.gyro_calibrated_ok_all()) { sub.ahrs.reset_gyro_drift(); return true; } return false; } // position_ok - returns true if the horizontal absolute position is ok and home position is set bool Sub::position_ok() { // return false if ekf failsafe has triggered if (failsafe.ekf) { return false; } // check ekf position estimate return (ekf_position_ok() || optflow_position_ok()); } // ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set bool Sub::ekf_position_ok() { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal position if (!motors.armed()) { return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); } else { // once armed we require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } } // optflow_position_ok - returns true if optical flow based position estimate is ok bool Sub::optflow_position_ok() { #if OPTFLOW != ENABLED return false; #else // return immediately if optflow is not enabled or EKF not used if (!optflow.enabled() || !ahrs.have_inertial_nav()) { return false; } // get filter status from EKF nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal relative position if (!motors.armed()) { return (filt_status.flags.pred_horiz_pos_rel); } else { return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); } #endif } /* should we log a message type now? */ bool Sub::should_log(uint32_t mask) { #if LOGGING_ENABLED == ENABLED if (!(mask & g.log_bitmask) || in_mavlink_delay) { return false; } bool ret = DataFlash.logging_started() && (motors.armed() || DataFlash.log_while_disarmed()); return ret; #else return false; #endif }