#include "Plane.h" // Code to integrate AC_Fence library with main ArduPlane code #if AC_FENCE == ENABLED // fence_check - ask fence library to check for breaches and initiate the response void Plane::fence_check() { const uint8_t orig_breaches = fence.get_breaches(); // check for new breaches; new_breaches is bitmask of fence types breached const uint8_t new_breaches = fence.check(); if (!fence.enabled()) { // Switch back to the chosen control mode if still in // GUIDED to the return point switch(fence.get_action()) { case AC_FENCE_ACTION_GUIDED: case AC_FENCE_ACTION_GUIDED_THROTTLE_PASS: case AC_FENCE_ACTION_RTL_AND_LAND: if (plane.control_mode_reason == ModeReason::FENCE_BREACHED && control_mode->is_guided_mode()) { set_mode(*previous_mode, ModeReason::FENCE_RETURN_PREVIOUS_MODE); } break; default: // No returning to a previous mode, unless our action allows it break; } } // we still don't do anything when disarmed, but we do check for fence breaches. // fence pre-arm check actually checks if any fence has been breached // that's not ever going to be true if we don't call check on AP_Fence while disarmed if (!arming.is_armed()) { return; } // Never trigger a fence breach in the final stage of landing if (landing.is_expecting_impact()) { return; } if (new_breaches) { // if the user wants some kind of response and motors are armed const uint8_t fence_act = fence.get_action(); switch (fence_act) { case AC_FENCE_ACTION_REPORT_ONLY: break; case AC_FENCE_ACTION_GUIDED: case AC_FENCE_ACTION_GUIDED_THROTTLE_PASS: case AC_FENCE_ACTION_RTL_AND_LAND: // make sure we don't auto trim the surfaces on this mode change int8_t saved_auto_trim = g.auto_trim; g.auto_trim.set(0); if (fence_act == AC_FENCE_ACTION_RTL_AND_LAND) { set_mode(mode_rtl, ModeReason::FENCE_BREACHED); } else { set_mode(mode_guided, ModeReason::FENCE_BREACHED); } g.auto_trim.set(saved_auto_trim); if (fence.get_return_rally() != 0 || fence_act == AC_FENCE_ACTION_RTL_AND_LAND) { guided_WP_loc = rally.calc_best_rally_or_home_location(current_loc, get_RTL_altitude()); } else { //return to fence return point, not a rally point guided_WP_loc = {}; if (fence.get_return_altitude() > 0) { // fly to the return point using _retalt guided_WP_loc.alt = home.alt + 100.0f * fence.get_return_altitude(); } else if (fence.get_safe_alt_min() >= fence.get_safe_alt_max()) { // invalid min/max, use RTL_altitude guided_WP_loc.alt = home.alt + g.RTL_altitude_cm; } else { // fly to the return point, with an altitude half way between // min and max guided_WP_loc.alt = home.alt + 100.0f * (fence.get_safe_alt_min() + fence.get_safe_alt_max()) / 2; } Vector2l return_point; if(fence.polyfence().get_return_point(return_point)) { guided_WP_loc.lat = return_point[0]; guided_WP_loc.lng = return_point[1]; } else { // should. not. happen. guided_WP_loc.lat = current_loc.lat; guided_WP_loc.lng = current_loc.lng; } } //! TODO: Update setting of guided location /* fence_state->guided_lat = guided_WP_loc.lat; fence_state->guided_lng = guided_WP_loc.lng; */ if (fence.get_action() != AC_FENCE_ACTION_RTL_AND_LAND) { setup_terrain_target_alt(guided_WP_loc); set_guided_WP(); } if (fence.get_action() == AC_FENCE_ACTION_GUIDED_THROTTLE_PASS) { guided_throttle_passthru = true; } break; } AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_FENCE, LogErrorCode(new_breaches)); } else if (orig_breaches) { // record clearing of breach AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_FENCE, LogErrorCode::ERROR_RESOLVED); } } bool Plane::fence_stickmixing(void) const { if (fence.enabled() && fence.get_breaches() && control_mode->is_guided_mode()) { // don't mix in user input return false; } // normal mixing rules return true; } #endif