/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* DataFlash_APM1.cpp - DataFlash log library for AT45DB161 Code by Jordi Munoz and Jose Julio. DIYDrones.com This code works with boards based on ATMega168/328 and ATMega1280/2560 using SPI port This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Dataflash library for AT45DB161D flash memory Memory organization : 4096 pages of 512 bytes or 528 bytes Maximun write bandwidth : 512 bytes in 14ms This code is written so the master never has to wait to write the data on the eeprom Methods: Init() : Library initialization (SPI initialization) StartWrite(page) : Start a write session. page=start page. WriteByte(data) : Write a byte WriteInt(data) : Write an integer (2 bytes) WriteLong(data) : Write a long (4 bytes) StartRead(page) : Start a read on (page) GetWritePage() : Returns the last page written to GetPage() : Returns the last page read ReadByte() ReadInt() ReadLong() Properties: */ #include #include "DataFlash.h" #include // flash size #define DF_LAST_PAGE 4096 // arduino mega SPI pins #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define DF_DATAOUT 51 // MOSI #define DF_DATAIN 50 // MISO #define DF_SPICLOCK 52 // SCK #define DF_SLAVESELECT 53 // SS (PB0) #define DF_RESET 31 // RESET (PC6) #else // normal arduino SPI pins... #define DF_DATAOUT 11 //MOSI #define DF_DATAIN 12 //MISO #define DF_SPICLOCK 13 //SCK #define DF_SLAVESELECT 10 //SS #endif // AT45DB161D Commands (from Datasheet) #define DF_TRANSFER_PAGE_TO_BUFFER_1 0x53 #define DF_TRANSFER_PAGE_TO_BUFFER_2 0x55 #define DF_STATUS_REGISTER_READ 0xD7 #define DF_READ_MANUFACTURER_AND_DEVICE_ID 0x9F #define DF_PAGE_READ 0xD2 #define DF_BUFFER_1_READ 0xD4 #define DF_BUFFER_2_READ 0xD6 #define DF_BUFFER_1_WRITE 0x84 #define DF_BUFFER_2_WRITE 0x87 #define DF_BUFFER_1_TO_PAGE_WITH_ERASE 0x83 #define DF_BUFFER_2_TO_PAGE_WITH_ERASE 0x86 #define DF_PAGE_ERASE 0x81 #define DF_BLOCK_ERASE 0x50 #define DF_SECTOR_ERASE 0x7C #define DF_CHIP_ERASE_0 0xC7 #define DF_CHIP_ERASE_1 0x94 #define DF_CHIP_ERASE_2 0x80 #define DF_CHIP_ERASE_3 0x9A // *** INTERNAL FUNCTIONS *** void dataflash_CS_inactive() { digitalWrite(DF_SLAVESELECT,HIGH); //disable device } void dataflash_CS_active() { digitalWrite(DF_SLAVESELECT,LOW); //enable device } // Constructors //////////////////////////////////////////////////////////////// DataFlash_APM1::DataFlash_APM1() { } // Public Methods ////////////////////////////////////////////////////////////// void DataFlash_APM1::Init(void) { pinMode(DF_DATAOUT, OUTPUT); pinMode(DF_DATAIN, INPUT); pinMode(DF_SPICLOCK,OUTPUT); pinMode(DF_SLAVESELECT,OUTPUT); #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) pinMode(DF_RESET,OUTPUT); // Reset the chip digitalWrite(DF_RESET,LOW); delay(1); digitalWrite(DF_RESET,HIGH); #endif dataflash_CS_inactive(); //disable device // Setup SPI Master, Mode 3, fosc/4 = 4MHz SPI.begin(); SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE3); SPI.setClockDivider(SPI_CLOCK_DIV2); // get page size: 512 or 528 df_PageSize=PageSize(); df_NumPages = DF_LAST_PAGE; } // This function is mainly to test the device void DataFlash_APM1::ReadManufacturerID() { dataflash_CS_active(); // activate dataflash command decoder // Read manufacturer and ID command... SPI.transfer(DF_READ_MANUFACTURER_AND_DEVICE_ID); df_manufacturer = SPI.transfer(0xff); df_device_0 = SPI.transfer(0xff); df_device_1 = SPI.transfer(0xff); SPI.transfer(0xff); dataflash_CS_inactive(); // Reset dataflash command decoder } // Read the status register byte DataFlash_APM1::ReadStatusReg() { byte tmp; dataflash_CS_active(); // activate dataflash command decoder // Read status command SPI.transfer(DF_STATUS_REGISTER_READ); tmp = SPI.transfer(0x00); // We only want to extract the READY/BUSY bit dataflash_CS_inactive(); // Reset dataflash command decoder return tmp; } // Read the status of the DataFlash inline byte DataFlash_APM1::ReadStatus() { return(ReadStatusReg()&0x80); // We only want to extract the READY/BUSY bit } inline uint16_t DataFlash_APM1::PageSize() { return(528-((ReadStatusReg()&0x01)<<4)); // if first bit 1 trhen 512 else 528 bytes } // Wait until DataFlash is in ready state... void DataFlash_APM1::WaitReady() { while(!ReadStatus()); } void DataFlash_APM1::PageToBuffer(unsigned char BufferNum, uint16_t PageAdr) { dataflash_CS_active(); // activate dataflash command decoder if (BufferNum==1) SPI.transfer(DF_TRANSFER_PAGE_TO_BUFFER_1); else SPI.transfer(DF_TRANSFER_PAGE_TO_BUFFER_2); if(df_PageSize==512){ SPI.transfer((unsigned char)(PageAdr >> 7)); SPI.transfer((unsigned char)(PageAdr << 1)); }else{ SPI.transfer((unsigned char)(PageAdr >> 6)); SPI.transfer((unsigned char)(PageAdr << 2)); } SPI.transfer(0x00); // don´t care bytes dataflash_CS_inactive(); //initiate the transfer dataflash_CS_active(); while(!ReadStatus()); //monitor the status register, wait until busy-flag is high dataflash_CS_inactive(); } void DataFlash_APM1::BufferToPage (unsigned char BufferNum, uint16_t PageAdr, unsigned char wait) { dataflash_CS_active(); // activate dataflash command decoder if (BufferNum==1) SPI.transfer(DF_BUFFER_1_TO_PAGE_WITH_ERASE); else SPI.transfer(DF_BUFFER_2_TO_PAGE_WITH_ERASE); if(df_PageSize==512){ SPI.transfer((unsigned char)(PageAdr >> 7)); SPI.transfer((unsigned char)(PageAdr << 1)); }else{ SPI.transfer((unsigned char)(PageAdr >> 6)); SPI.transfer((unsigned char)(PageAdr << 2)); } SPI.transfer(0x00); // don´t care bytes dataflash_CS_inactive(); //initiate the transfer dataflash_CS_active(); // Check if we need to wait to write the buffer to memory or we can continue... if (wait) while(!ReadStatus()); //monitor the status register, wait until busy-flag is high dataflash_CS_inactive(); //deactivate dataflash command decoder } void DataFlash_APM1::BufferWrite (unsigned char BufferNum, uint16_t IntPageAdr, unsigned char Data) { dataflash_CS_active(); // activate dataflash command decoder if (BufferNum==1) SPI.transfer(DF_BUFFER_1_WRITE); else SPI.transfer(DF_BUFFER_2_WRITE); SPI.transfer(0x00); //don't cares SPI.transfer((unsigned char)(IntPageAdr>>8)); //upper part of internal buffer address SPI.transfer((unsigned char)(IntPageAdr)); //lower part of internal buffer address SPI.transfer(Data); //write data byte dataflash_CS_inactive(); // disable dataflash command decoder } unsigned char DataFlash_APM1::BufferRead (unsigned char BufferNum, uint16_t IntPageAdr) { byte tmp; dataflash_CS_active(); // activate dataflash command decoder if (BufferNum==1) SPI.transfer(DF_BUFFER_1_READ); else SPI.transfer(DF_BUFFER_2_READ); SPI.transfer(0x00); //don't cares SPI.transfer((unsigned char)(IntPageAdr>>8)); //upper part of internal buffer address SPI.transfer((unsigned char)(IntPageAdr)); //lower part of internal buffer address SPI.transfer(0x00); //don't cares tmp = SPI.transfer(0x00); //read data byte dataflash_CS_inactive(); // deactivate dataflash command decoder return (tmp); } // *** END OF INTERNAL FUNCTIONS *** void DataFlash_APM1::PageErase (uint16_t PageAdr) { dataflash_CS_active(); // activate dataflash command decoder SPI.transfer(DF_PAGE_ERASE); // Command if(df_PageSize==512){ SPI.transfer((unsigned char)(PageAdr >> 7)); SPI.transfer((unsigned char)(PageAdr << 1)); }else{ SPI.transfer((unsigned char)(PageAdr >> 6)); SPI.transfer((unsigned char)(PageAdr << 2)); } SPI.transfer(0x00); // "dont cares" dataflash_CS_inactive(); //initiate flash page erase dataflash_CS_active(); while(!ReadStatus()); dataflash_CS_inactive(); // deactivate dataflash command decoder } void DataFlash_APM1::ChipErase () { dataflash_CS_active(); // activate dataflash command decoder // opcodes for chip erase SPI.transfer(DF_CHIP_ERASE_0); SPI.transfer(DF_CHIP_ERASE_1); SPI.transfer(DF_CHIP_ERASE_2); SPI.transfer(DF_CHIP_ERASE_3); dataflash_CS_inactive(); //initiate flash page erase dataflash_CS_active(); while(!ReadStatus()); dataflash_CS_inactive(); // deactivate dataflash command decoder }