// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); static int8_t test_radio(uint8_t argc, const Menu::arg *argv); static int8_t test_passthru(uint8_t argc, const Menu::arg *argv); static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); static int8_t test_gps(uint8_t argc, const Menu::arg *argv); #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 static int8_t test_adc(uint8_t argc, const Menu::arg *argv); #endif static int8_t test_ins(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv); static int8_t test_wp(uint8_t argc, const Menu::arg *argv); static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv); static int8_t test_pressure(uint8_t argc, const Menu::arg *argv); static int8_t test_mag(uint8_t argc, const Menu::arg *argv); static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv); static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv); static int8_t test_logging(uint8_t argc, const Menu::arg *argv); #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 static int8_t test_shell(uint8_t argc, const Menu::arg *argv); #endif // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Common for implementation details static const struct Menu::command test_menu_commands[] PROGMEM = { {"pwm", test_radio_pwm}, {"radio", test_radio}, {"passthru", test_passthru}, {"failsafe", test_failsafe}, {"relay", test_relay}, {"waypoints", test_wp}, {"xbee", test_xbee}, {"eedump", test_eedump}, {"modeswitch", test_modeswitch}, // Tests below here are for hardware sensors only present // when real sensors are attached or they are emulated #if HIL_MODE == HIL_MODE_DISABLED #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 {"adc", test_adc}, #endif {"gps", test_gps}, {"rawgps", test_rawgps}, {"ins", test_ins}, {"airspeed", test_airspeed}, {"airpressure", test_pressure}, {"compass", test_mag}, #else {"gps", test_gps}, {"ins", test_ins}, {"compass", test_mag}, #endif {"logging", test_logging}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 {"shell", test_shell}, #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); static int8_t test_mode(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Test Mode\n\n")); test_menu.run(); return 0; } static void print_hit_enter() { cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n")); } static int8_t test_eedump(uint8_t argc, const Menu::arg *argv) { uint16_t i, j; // hexdump the EEPROM for (i = 0; i < EEPROM_MAX_ADDR; i += 16) { cliSerial->printf_P(PSTR("%04x:"), i); for (j = 0; j < 16; j++) cliSerial->printf_P(PSTR(" %02x"), hal.storage->read_byte(i + j)); cliSerial->println(); } return(0); } static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); cliSerial->printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), (int)channel_roll->radio_in, (int)channel_pitch->radio_in, (int)channel_throttle->radio_in, (int)channel_rudder->radio_in, (int)g.rc_5.radio_in, (int)g.rc_6.radio_in, (int)g.rc_7.radio_in, (int)g.rc_8.radio_in); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_passthru(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(20); // New radio frame? (we could use also if((millis()- timer) > 20) if (hal.rcin->valid_channels() > 0) { cliSerial->print_P(PSTR("CH:")); for(int16_t i = 0; i < 8; i++) { cliSerial->print(hal.rcin->read(i)); // Print channel values print_comma(); servo_write(i, hal.rcin->read(i)); // Copy input to Servos } cliSerial->println(); } if (cliSerial->available() > 0) { return (0); } } return 0; } static int8_t test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); // read the radio to set trims // --------------------------- trim_radio(); while(1) { delay(20); read_radio(); channel_roll->calc_pwm(); channel_pitch->calc_pwm(); channel_throttle->calc_pwm(); channel_rudder->calc_pwm(); // write out the servo PWM values // ------------------------------ set_servos(); cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), (int)channel_roll->control_in, (int)channel_pitch->control_in, (int)channel_throttle->control_in, (int)channel_rudder->control_in, (int)g.rc_5.control_in, (int)g.rc_6.control_in, (int)g.rc_7.control_in, (int)g.rc_8.control_in); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv) { uint8_t fail_test; print_hit_enter(); for(int16_t i = 0; i < 50; i++) { delay(20); read_radio(); } // read the radio to set trims // --------------------------- trim_radio(); oldSwitchPosition = readSwitch(); cliSerial->printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); while(channel_throttle->control_in > 0) { delay(20); read_radio(); } while(1) { delay(20); read_radio(); if(channel_throttle->control_in > 0) { cliSerial->printf_P(PSTR("THROTTLE CHANGED %d \n"), (int)channel_throttle->control_in); fail_test++; } if(oldSwitchPosition != readSwitch()) { cliSerial->printf_P(PSTR("CONTROL MODE CHANGED: ")); print_flight_mode(cliSerial, readSwitch()); cliSerial->println(); fail_test++; } if(g.throttle_fs_enabled && channel_throttle->get_failsafe()) { cliSerial->printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), (int)channel_throttle->radio_in); print_flight_mode(cliSerial, readSwitch()); cliSerial->println(); fail_test++; } if(fail_test > 0) { return (0); } if(cliSerial->available() > 0) { cliSerial->printf_P(PSTR("LOS caused no change in APM.\n")); return (0); } } } static int8_t test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { cliSerial->printf_P(PSTR("Relay on\n")); relay.on(0); delay(3000); if(cliSerial->available() > 0) { return (0); } cliSerial->printf_P(PSTR("Relay off\n")); relay.off(0); delay(3000); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_wp(uint8_t argc, const Menu::arg *argv) { delay(1000); // save the alitude above home option if (g.RTL_altitude_cm < 0) { cliSerial->printf_P(PSTR("Hold current altitude\n")); }else{ cliSerial->printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude_cm/100); } cliSerial->printf_P(PSTR("%d waypoints\n"), (int)g.command_total); cliSerial->printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius); cliSerial->printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius); for(uint8_t i = 0; i <= g.command_total; i++) { struct Location temp = get_cmd_with_index(i); test_wp_print(&temp, i); } return (0); } static void test_wp_print(const struct Location *cmd, uint8_t wp_index) { cliSerial->printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"), (int)wp_index, (int)cmd->id, (int)cmd->options, (int)cmd->p1, (long)cmd->alt, (long)cmd->lat, (long)cmd->lng); } static int8_t test_xbee(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); cliSerial->printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n")); while(1) { if (hal.uartC->available()) hal.uartC->write(hal.uartC->read()); if(cliSerial->available() > 0) { return (0); } } } static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); cliSerial->printf_P(PSTR("Control CH ")); cliSerial->println(FLIGHT_MODE_CHANNEL, BASE_DEC); while(1) { delay(20); uint8_t switchPosition = readSwitch(); if (oldSwitchPosition != switchPosition) { cliSerial->printf_P(PSTR("Position %d\n"), (int)switchPosition); oldSwitchPosition = switchPosition; } if(cliSerial->available() > 0) { return (0); } } } /* * test the dataflash is working */ static int8_t test_logging(uint8_t argc, const Menu::arg *argv) { DataFlash.ShowDeviceInfo(cliSerial); return 0; } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 /* * run a debug shell */ static int8_t test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif //------------------------------------------------------------------------------------------- // tests in this section are for real sensors or sensors that have been simulated #if CONFIG_INS_TYPE == CONFIG_INS_OILPAN || CONFIG_HAL_BOARD == HAL_BOARD_APM1 static int8_t test_adc(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); apm1_adc.Init(); delay(1000); cliSerial->printf_P(PSTR("ADC\n")); delay(1000); while(1) { for (int8_t i=0; i<9; i++) cliSerial->printf_P(PSTR("%.1f\t"),apm1_adc.Ch(i)); cliSerial->println(); delay(100); if(cliSerial->available() > 0) { return (0); } } } #endif // CONFIG_INS_TYPE static int8_t test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { delay(100); g_gps->update(); if (g_gps->new_data) { cliSerial->printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"), (long)g_gps->latitude, (long)g_gps->longitude, (long)g_gps->altitude_cm/100, (int)g_gps->num_sats); }else{ cliSerial->printf_P(PSTR(".")); } if(cliSerial->available() > 0) { return (0); } } } static int8_t test_ins(uint8_t argc, const Menu::arg *argv) { //cliSerial->printf_P(PSTR("Calibrating.")); ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate); ahrs.reset(); print_hit_enter(); delay(1000); uint8_t counter = 0; while(1) { delay(20); if (hal.scheduler->micros() - fast_loopTimer_us > 19000UL) { fast_loopTimer_us = hal.scheduler->micros(); // INS // --- ahrs.update(); if(g.compass_enabled) { counter++; if(counter == 5) { compass.read(); counter = 0; } } // We are using the INS // --------------------- Vector3f gyros = ins.get_gyro(); Vector3f accels = ins.get_accel(); cliSerial->printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"), (int)ahrs.roll_sensor / 100, (int)ahrs.pitch_sensor / 100, (uint16_t)ahrs.yaw_sensor / 100, gyros.x, gyros.y, gyros.z, accels.x, accels.y, accels.z); } if(cliSerial->available() > 0) { return (0); } } } static int8_t test_mag(uint8_t argc, const Menu::arg *argv) { if (!g.compass_enabled) { cliSerial->printf_P(PSTR("Compass: ")); print_enabled(false); return (0); } if (!compass.init()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); return 0; } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ahrs.set_compass(&compass); report_compass(); // we need the AHRS initialised for this test ins.init(AP_InertialSensor::COLD_START, ins_sample_rate); ahrs.reset(); uint16_t counter = 0; float heading = 0; print_hit_enter(); while(1) { delay(20); if (hal.scheduler->micros() - fast_loopTimer_us > 19000UL) { fast_loopTimer_us = hal.scheduler->micros(); // INS // --- ahrs.update(); if(counter % 5 == 0) { if (compass.read()) { // Calculate heading const Matrix3f &m = ahrs.get_dcm_matrix(); heading = compass.calculate_heading(m); compass.learn_offsets(); } } counter++; if (counter>20) { if (compass.healthy()) { const Vector3f &mag_ofs = compass.get_offsets(); const Vector3f &mag = compass.get_field(); cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), (wrap_360_cd(ToDeg(heading) * 100)) /100, mag.x, mag.y, mag.z, mag_ofs.x, mag_ofs.y, mag_ofs.z); } else { cliSerial->println_P(PSTR("compass not healthy")); } counter=0; } } if (cliSerial->available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. cliSerial->println_P(PSTR("saving offsets")); compass.save_offsets(); return (0); } //------------------------------------------------------------------------------------------- // real sensors that have not been simulated yet go here #if HIL_MODE == HIL_MODE_DISABLED static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv) { if (!airspeed.enabled()) { cliSerial->printf_P(PSTR("airspeed: ")); print_enabled(false); return (0); }else{ print_hit_enter(); zero_airspeed(); cliSerial->printf_P(PSTR("airspeed: ")); print_enabled(true); while(1) { delay(20); read_airspeed(); cliSerial->printf_P(PSTR("%.1f m/s\n"), airspeed.get_airspeed()); if(cliSerial->available() > 0) { return (0); } } } } static int8_t test_pressure(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Uncalibrated relative airpressure\n")); print_hit_enter(); init_barometer(); while(1) { delay(100); if (!barometer.healthy) { cliSerial->println_P(PSTR("not healthy")); } else { cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"), barometer.get_altitude(), barometer.get_pressure(), barometer.get_temperature()); } if(cliSerial->available() > 0) { return (0); } } } static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1) { // Blink Yellow LED if we are sending data to GPS if (hal.uartC->available()) { hal.uartB->write(hal.uartC->read()); } // Blink Red LED if we are receiving data from GPS if (hal.uartB->available()) { hal.uartC->write(hal.uartB->read()); } if(cliSerial->available() > 0) { return (0); } } } #endif // HIL_MODE == HIL_MODE_DISABLED #endif // CLI_ENABLED