#include "Sub.h" /* constructor for Mode object */ Mode::Mode(void) : g(sub.g), g2(sub.g2), inertial_nav(sub.inertial_nav), ahrs(sub.ahrs), motors(sub.motors), channel_roll(sub.channel_roll), channel_pitch(sub.channel_pitch), channel_throttle(sub.channel_throttle), channel_yaw(sub.channel_yaw), channel_forward(sub.channel_forward), channel_lateral(sub.channel_lateral), position_control(&sub.pos_control), attitude_control(&sub.attitude_control), G_Dt(sub.G_Dt) { }; // return the static controller object corresponding to supplied mode Mode *Sub::mode_from_mode_num(const Mode::Number mode) { Mode *ret = nullptr; switch (mode) { case Mode::Number::MANUAL: ret = &mode_manual; break; case Mode::Number::STABILIZE: ret = &mode_stabilize; break; case Mode::Number::ACRO: ret = &mode_acro; break; case Mode::Number::ALT_HOLD: ret = &mode_althold; break; case Mode::Number::SURFTRAK: ret = &mode_surftrak; break; case Mode::Number::POSHOLD: ret = &mode_poshold; break; case Mode::Number::AUTO: ret = &mode_auto; break; case Mode::Number::GUIDED: ret = &mode_guided; break; case Mode::Number::CIRCLE: ret = &mode_circle; break; case Mode::Number::SURFACE: ret = &mode_surface; break; case Mode::Number::MOTOR_DETECT: ret = &mode_motordetect; break; default: break; } return ret; } // set_mode - change flight mode and perform any necessary initialisation // optional force parameter used to force the flight mode change (used only first time mode is set) // returns true if mode was successfully set // Some modes can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately bool Sub::set_mode(Mode::Number mode, ModeReason reason) { // return immediately if we are already in the desired mode if (mode == control_mode) { control_mode_reason = reason; return true; } Mode *new_flightmode = mode_from_mode_num((Mode::Number)mode); if (new_flightmode == nullptr) { notify_no_such_mode((uint8_t)mode); return false; } if (new_flightmode->requires_GPS() && !sub.position_ok()) { gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: %s requires position", new_flightmode->name()); LOGGER_WRITE_ERROR(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode)); return false; } // check for valid altitude if old mode did not require it but new one does // we only want to stop changing modes if it could make things worse if (!sub.control_check_barometer() && // maybe use ekf_alt_ok() instead? flightmode->has_manual_throttle() && !new_flightmode->has_manual_throttle()) { gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: %s need alt estimate", new_flightmode->name()); LOGGER_WRITE_ERROR(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode)); return false; } if (!new_flightmode->init(false)) { gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed %s", new_flightmode->name()); LOGGER_WRITE_ERROR(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode)); return false; } // perform any cleanup required by previous flight mode exit_mode(flightmode, new_flightmode); // store previous flight mode (only used by tradeheli's autorotation) prev_control_mode = control_mode; // update flight mode flightmode = new_flightmode; control_mode = mode; control_mode_reason = reason; #if HAL_LOGGING_ENABLED logger.Write_Mode((uint8_t)control_mode, reason); #endif gcs().send_message(MSG_HEARTBEAT); // update notify object notify_flight_mode(); // return success return true; } // exit_mode - high level call to organise cleanup as a flight mode is exited void Sub::exit_mode(Mode::Number old_control_mode, Mode::Number new_control_mode) { // stop mission when we leave auto mode if (old_control_mode == Mode::Number::AUTO) { if (mission.state() == AP_Mission::MISSION_RUNNING) { mission.stop(); } #if HAL_MOUNT_ENABLED camera_mount.set_mode_to_default(); #endif // HAL_MOUNT_ENABLED } } bool Sub::set_mode(const uint8_t new_mode, const ModeReason reason) { static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number"); return sub.set_mode(static_cast(new_mode), reason); } // update_flight_mode - calls the appropriate attitude controllers based on flight mode // called at 100hz or more void Sub::update_flight_mode() { flightmode->run(); } // exit_mode - high level call to organise cleanup as a flight mode is exited void Sub::exit_mode(Mode *&old_flightmode, Mode *&new_flightmode){ #if HAL_MOUNT_ENABLED camera_mount.set_mode_to_default(); #endif // HAL_MOUNT_ENABLED } // notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device void Sub::notify_flight_mode() { AP_Notify::flags.autopilot_mode = flightmode->is_autopilot(); AP_Notify::flags.flight_mode = (uint8_t)control_mode; notify.set_flight_mode_str(flightmode->name4()); } // get_pilot_desired_angle_rates - transform pilot's roll pitch and yaw input into a desired lean angle rates // returns desired angle rates in centi-degrees-per-second void Mode::get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out) { float rate_limit; Vector3f rate_ef_level, rate_bf_level, rate_bf_request; // apply circular limit to pitch and roll inputs float total_in = norm(pitch_in, roll_in); if (total_in > ROLL_PITCH_INPUT_MAX) { float ratio = (float)ROLL_PITCH_INPUT_MAX / total_in; roll_in *= ratio; pitch_in *= ratio; } // calculate roll, pitch rate requests if (g.acro_expo <= 0) { rate_bf_request.x = roll_in * g.acro_rp_p; rate_bf_request.y = pitch_in * g.acro_rp_p; } else { // expo variables float rp_in, rp_in3, rp_out; // range check expo if (g.acro_expo > 1.0f) { g.acro_expo.set(1.0f); } // roll expo rp_in = float(roll_in)/ROLL_PITCH_INPUT_MAX; rp_in3 = rp_in*rp_in*rp_in; rp_out = (g.acro_expo * rp_in3) + ((1 - g.acro_expo) * rp_in); rate_bf_request.x = ROLL_PITCH_INPUT_MAX * rp_out * g.acro_rp_p; // pitch expo rp_in = float(pitch_in)/ROLL_PITCH_INPUT_MAX; rp_in3 = rp_in*rp_in*rp_in; rp_out = (g.acro_expo * rp_in3) + ((1 - g.acro_expo) * rp_in); rate_bf_request.y = ROLL_PITCH_INPUT_MAX * rp_out * g.acro_rp_p; } // calculate yaw rate request rate_bf_request.z = yaw_in * g.acro_yaw_p; // calculate earth frame rate corrections to pull the vehicle back to level while in ACRO mode if (g.acro_trainer != ACRO_TRAINER_DISABLED) { // Calculate trainer mode earth frame rate command for roll int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor); rate_ef_level.x = -constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll; // Calculate trainer mode earth frame rate command for pitch int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor); rate_ef_level.y = -constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch; // Calculate trainer mode earth frame rate command for yaw rate_ef_level.z = 0; // Calculate angle limiting earth frame rate commands if (g.acro_trainer == ACRO_TRAINER_LIMITED) { if (roll_angle > sub.aparm.angle_max) { rate_ef_level.x -= g.acro_balance_roll*(roll_angle-sub.aparm.angle_max); } else if (roll_angle < -sub.aparm.angle_max) { rate_ef_level.x -= g.acro_balance_roll*(roll_angle+sub.aparm.angle_max); } if (pitch_angle > sub.aparm.angle_max) { rate_ef_level.y -= g.acro_balance_pitch*(pitch_angle-sub.aparm.angle_max); } else if (pitch_angle < -sub.aparm.angle_max) { rate_ef_level.y -= g.acro_balance_pitch*(pitch_angle+sub.aparm.angle_max); } } // convert earth-frame level rates to body-frame level rates attitude_control->euler_rate_to_ang_vel(attitude_control->get_att_target_euler_cd()*radians(0.01f), rate_ef_level, rate_bf_level); // combine earth frame rate corrections with rate requests if (g.acro_trainer == ACRO_TRAINER_LIMITED) { rate_bf_request.x += rate_bf_level.x; rate_bf_request.y += rate_bf_level.y; rate_bf_request.z += rate_bf_level.z; } else { float acro_level_mix = constrain_float(1-MAX(MAX(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0, 0, 1)*ahrs.cos_pitch(); // Scale leveling rates by stick input rate_bf_level = rate_bf_level*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request.x)-fabsf(rate_bf_level.x)); rate_bf_request.x += rate_bf_level.x; rate_bf_request.x = constrain_float(rate_bf_request.x, -rate_limit, rate_limit); // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request.y)-fabsf(rate_bf_level.y)); rate_bf_request.y += rate_bf_level.y; rate_bf_request.y = constrain_float(rate_bf_request.y, -rate_limit, rate_limit); // Calculate rate limit to prevent change of rate through inverted rate_limit = fabsf(fabsf(rate_bf_request.z)-fabsf(rate_bf_level.z)); rate_bf_request.z += rate_bf_level.z; rate_bf_request.z = constrain_float(rate_bf_request.z, -rate_limit, rate_limit); } } // hand back rate request roll_out = rate_bf_request.x; pitch_out = rate_bf_request.y; yaw_out = rate_bf_request.z; } bool Mode::set_mode(Mode::Number mode, ModeReason reason) { return sub.set_mode(mode, reason); } GCS_Sub &Mode::gcs() { return sub.gcs(); }