/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define THISFIRMWARE "ArduCopter V2.2 b4" /* ArduCopter Version 2.2 Authors: Jason Short Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier This firmware is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Special Thanks for Contributors: Hein Hollander :Octo Support Dani Saez :V Ocoto Support Max Levine :Tri Support, Graphics Jose Julio :Stabilization Control laws Randy MacKay :Heli Support Jani Hiriven :Testing feedback Andrew Tridgell :Mavlink Support James Goppert :Mavlink Support Doug Weibel :Libraries Mike Smith :Libraries, Coding support HappyKillmore :Mavlink GCS Michael Oborne :Mavlink GCS Jack Dunkle :Alpha testing Christof Schmid :Alpha testing Oliver :Piezo support Guntars :Arming safety suggestion And much more so PLEASE PM me on DIYDRONES to add your contribution to the List Requires modified "mrelax" version of Arduino, which can be found here: http://code.google.com/p/ardupilot-mega/downloads/list */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// // AVR runtime #include #include #include #include // Libraries #include #include #include #include // ArduPilot Mega RC Library #include // ArduPilot GPS library #include // Arduino I2C lib #include // Arduino SPI lib #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include #include #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // ArduPilot Mega Inertial Sensor (accel & gyro) Library #include // ArduPilot Mega IMU Library #include // Parent header of Timer // (only included for makefile libpath to work) #include // TimerProcess is the scheduler for MPU6000 reads. #include // ArduPilot Mega DCM Library #include // PI library #include // PID library #include // RC Channel Library #include // Range finder library #include // Optical Flow library #include #include // APM relay #include // MAVLink GCS definitions #include // Configuration #include "defines.h" #include "config.h" #include "config_channels.h" // Local modules #include "Parameters.h" #include "GCS.h" //////////////////////////////////////////////////////////////////////////////// // Serial ports //////////////////////////////////////////////////////////////////////////////// // // Note that FastSerial port buffers are allocated at ::begin time, // so there is not much of a penalty to defining ports that we don't // use. // FastSerialPort0(Serial); // FTDI/console FastSerialPort1(Serial1); // GPS port FastSerialPort3(Serial3); // Telemetry port Arduino_Mega_ISR_Registry isr_registry; //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // static Parameters g; //////////////////////////////////////////////////////////////////////////////// // prototypes static void update_events(void); //////////////////////////////////////////////////////////////////////////////// // RC Hardware //////////////////////////////////////////////////////////////////////////////// #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 APM_RC_APM2 APM_RC; #else APM_RC_APM1 APM_RC; #endif //////////////////////////////////////////////////////////////////////////////// // Dataflash //////////////////////////////////////////////////////////////////////////////// #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 DataFlash_APM2 DataFlash; #else DataFlash_APM1 DataFlash; #endif //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. static GPS *g_gps; // flight modes convenience array static AP_Int8 *flight_modes = &g.flight_mode1; #if HIL_MODE == HIL_MODE_DISABLED // real sensors #if CONFIG_ADC == ENABLED AP_ADC_ADS7844 adc; #endif #ifdef DESKTOP_BUILD AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; #else #if CONFIG_BARO == AP_BARO_BMP085 # if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_Baro_BMP085 barometer(true); # else AP_Baro_BMP085 barometer(false); # endif #elif CONFIG_BARO == AP_BARO_MS5611 AP_Baro_MS5611 barometer; #endif AP_Compass_HMC5843 compass(Parameters::k_param_compass); #endif #ifdef OPTFLOW_ENABLED AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); #else AP_OpticalFlow optflow; #endif // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 AP_GPS_MTK16 g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver(NULL); #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL #if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN ); #else AP_InertialSensor_Oilpan ins(&adc); #endif AP_IMU_INS imu(&ins, Parameters::k_param_IMU_calibration); AP_DCM dcm(&imu, g_gps); AP_TimerProcess timer_scheduler; #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators AP_ADC_HIL adc; AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver(NULL); AP_IMU_Shim imu; AP_DCM dcm(&imu, g_gps); AP_PeriodicProcessStub timer_scheduler; AP_InertialSensor_Stub ins; static int32_t gps_base_alt; #elif HIL_MODE == HIL_MODE_ATTITUDE AP_ADC_HIL adc; AP_DCM_HIL dcm; AP_GPS_HIL g_gps_driver(NULL); AP_Compass_HIL compass; // never used AP_Baro_BMP085_HIL barometer; AP_IMU_Shim imu; // never used AP_InertialSensor_Stub ins; AP_PeriodicProcessStub timer_scheduler; #ifdef OPTFLOW_ENABLED AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); #endif static int32_t gps_base_alt; #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// GCS_MAVLINK gcs0(Parameters::k_param_streamrates_port0); GCS_MAVLINK gcs3(Parameters::k_param_streamrates_port3); //////////////////////////////////////////////////////////////////////////////// // SONAR selection //////////////////////////////////////////////////////////////////////////////// // ModeFilter sonar_mode_filter; #if CONFIG_SONAR == ENABLED #if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25); #elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN); #endif AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter); #endif // agmatthews USERHOOKS //////////////////////////////////////////////////////////////////////////////// // User variables //////////////////////////////////////////////////////////////////////////////// #ifdef USERHOOK_VARIABLES #include USERHOOK_VARIABLES #endif //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// static const char* flight_mode_strings[] = { "STABILIZE", "ACRO", "ALT_HOLD", "AUTO", "GUIDED", "LOITER", "RTL", "CIRCLE", "POSITION", "LAND", "OF_LOITER"}; /* Radio values Channel assignments 1 Ailerons (rudder if no ailerons) 2 Elevator 3 Throttle 4 Rudder (if we have ailerons) 5 Mode - 3 position switch 6 User assignable 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) 8 TBD */ //Documentation of GLobals: //////////////////////////////////////////////////////////////////////////////// // The GPS based velocity calculated by offsetting the Latitude and Longitude // updated after GPS read - 5-10hz static int16_t x_GPS_speed; static int16_t y_GPS_speed; // The synthesized velocity calculated by fancy filtering and fusion // updated at 50hz static int16_t x_actual_speed; static int16_t y_actual_speed; // The difference between the desired rate of travel and the actual rate of travel // updated after GPS read - 5-10hz static int16_t x_rate_error; static int16_t y_rate_error; //static int16_t my_max_speed; // used for debugging logs //static int16_t target_x_rate; //////////////////////////////////////////////////////////////////////////////// // Radio //////////////////////////////////////////////////////////////////////////////// // This is the state of the flight control system // There are multiple states defined such as STABILIZE, ACRO, static int8_t control_mode = STABILIZE; // This is the state of simple mode. // Set in the control_mode.pde file when the control switch is read static bool do_simple = false; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch static byte oldSwitchPosition; // This is used to look for change in the control switch static byte old_control_mode = STABILIZE; //////////////////////////////////////////////////////////////////////////////// // Motor Output //////////////////////////////////////////////////////////////////////////////// // This is the array of PWM values being sent to the motors static int16_t motor_out[11]; // This is the array of PWM values being sent to the motors that has been lightly filtered with a simple LPF // This was added to try and deal with biger motors static int16_t motor_filtered[11]; //////////////////////////////////////////////////////////////////////////////// // Mavlink/HIL control //////////////////////////////////////////////////////////////////////////////// // Used to track the GCS based control input // Allow override of RC channel values for HIL static int16_t rc_override[8] = {0,0,0,0,0,0,0,0}; // Status flag that tracks whether we are under GCS control static bool rc_override_active = false; // Status flag that tracks whether we are under GCS control static uint32_t rc_override_fs_timer = 0; //////////////////////////////////////////////////////////////////////////////// // Heli //////////////////////////////////////////////////////////////////////////////// #if FRAME_CONFIG == HELI_FRAME static float heli_rollFactor[3], heli_pitchFactor[3]; // only required for 3 swashplate servos static int16_t heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly static int32_t heli_servo_out[4]; // used for servo averaging for analog servos static int16_t heli_servo_out_count; // use for servo averaging #endif //////////////////////////////////////////////////////////////////////////////// // Failsafe //////////////////////////////////////////////////////////////////////////////// // A status flag for the failsafe state // did our throttle dip below the failsafe value? static boolean failsafe; // A status flag for arming the motors. This is the arming that is performed when the // Yaw control is held right or left while throttle is low. static boolean motor_armed; // A status flag for whether or not we should allow AP to take over copter // This is tied to the throttle. If the throttle = 0 or low/nuetral, then we do not allow // the APM to take control of the copter. static boolean motor_auto_armed; //////////////////////////////////////////////////////////////////////////////// // PIDs //////////////////////////////////////////////////////////////////////////////// // This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates // and not the adjusted omega rates, but the name is stuck static Vector3f omega; // This is used to hold radio tuning values for in-flight CH6 tuning float tuning_value; //////////////////////////////////////////////////////////////////////////////// // LED output //////////////////////////////////////////////////////////////////////////////// // status of LED based on the motor_armed variable // Flashing indicates we are not armed // Solid indicates Armed state static boolean motor_light; // Flashing indicates we are reading the GPS Strings // Solid indicates we have full 3D lock and can navigate static boolean GPS_light; // This is current status for the LED lights state machine // setting this value changes the output of the LEDs static byte led_mode = NORMAL_LEDS; //////////////////////////////////////////////////////////////////////////////// // GPS variables //////////////////////////////////////////////////////////////////////////////// // This is used to scale GPS values for EEPROM storage // 10^7 times Decimal GPS means 1 == 1cm // This approximation makes calculations integer and it's easy to read static const float t7 = 10000000.0; // We use atan2 and other trig techniques to calaculate angles // We need to scale the longitude up to make these calcs work // to account for decreasing distance between lines of longitude away from the equator static float scaleLongUp = 1; // Sometimes we need to remove the scaling for distance calcs static float scaleLongDown = 1; //////////////////////////////////////////////////////////////////////////////// // Mavlink specific //////////////////////////////////////////////////////////////////////////////// // Used by Mavlink for unknow reasons static const float radius_of_earth = 6378100; // meters // Used by Mavlink for unknow reasons static const float gravity = 9.81; // meters/ sec^2 //////////////////////////////////////////////////////////////////////////////// // Location & Navigation //////////////////////////////////////////////////////////////////////////////// // Status flag indicating we have data that can be used to navigate // Set by a GPS read with 3D fix, or an optical flow read static bool nav_ok; // This is the angle from the copter to the "next_WP" location in degrees * 100 static int32_t target_bearing; // This is the angle from the copter to the "next_WP" location // with the addition of Crosstrack error in degrees * 100 static int32_t nav_bearing; // Status of the Waypoint tracking mode. Options include: // NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE static byte wp_control; // Register containing the index of the current navigation command in the mission script static uint8_t command_nav_index; // Register containing the index of the previous navigation command in the mission script // Used to manage the execution of conditional commands static uint8_t prev_nav_index; // Register containing the index of the current conditional command in the mission script static uint8_t command_cond_index; // Used to track the required WP navigation information // options include // NAV_ALTITUDE - have we reached the desired altitude? // NAV_LOCATION - have we reached the desired location? // NAV_DELAY - have we waited at the waypoint the desired time? static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints // used to limit the speed ramp up of WP navigation // Acceleration is limited to .5m/s/s static int16_t waypoint_speed_gov; // Used to track how many cm we are from the "next_WP" location static int32_t long_error, lat_error; //////////////////////////////////////////////////////////////////////////////// // Orientation //////////////////////////////////////////////////////////////////////////////// // Convienience accessors for commonly used trig functions. These values are generated // by the DCM through a few simple equations. They are used throughout the code where cos and sin // would normally be used. // The cos values are defaulted to 1 to get a decent initial value for a level state static float cos_roll_x = 1; static float cos_pitch_x = 1; static float cos_yaw_x = 1; static float sin_pitch_y, sin_yaw_y, sin_roll_y; //////////////////////////////////////////////////////////////////////////////// // SIMPLE Mode //////////////////////////////////////////////////////////////////////////////// // Used to track the orientation of the copter for Simple mode. This value is reset at each arming // or in SuperSimple mode when the copter leaves a 20m radius from home. static int32_t initial_simple_bearing; //////////////////////////////////////////////////////////////////////////////// // Circle Mode / Loiter control //////////////////////////////////////////////////////////////////////////////// // used to determin the desired location in Circle mode // increments at circle_rate / second static float circle_angle; // used to control the speed of Circle mode // units are in radians, default is 5° per second static const float circle_rate = 0.0872664625; // used to track the delat in Circle Mode static int32_t old_target_bearing; // deg : how many times to circle * 360 for Loiter/Circle Mission command static int16_t loiter_total; // deg : how far we have turned around a waypoint static int16_t loiter_sum; // How long we should stay in Loiter Mode for mission scripting static uint16_t loiter_time_max; // How long have we been loitering - The start time in millis static uint32_t loiter_time; // The synthetic location created to make the copter do circles around a WP static struct Location circle_WP; //////////////////////////////////////////////////////////////////////////////// // CH7 control //////////////////////////////////////////////////////////////////////////////// // Used to enable Jose's flip code // when true the Roll/Pitch/Throttle control is sent to the flip state machine #if CH7_OPTION == CH7_FLIP static bool do_flip = false; #endif // Used to track the CH7 toggle state. // When CH7 goes LOW PWM from HIGH PWM, this value will have been set true // This allows advanced functionality to know when to execute static boolean trim_flag; // This register tracks the current Mission Command index when writing // a mission using CH7 in flight static int8_t CH7_wp_index; //////////////////////////////////////////////////////////////////////////////// // Battery Sensors //////////////////////////////////////////////////////////////////////////////// // Battery Voltage of battery, initialized above threshold for filter static float battery_voltage1 = LOW_VOLTAGE * 1.05; // refers to the instant amp draw – based on an Attopilot Current sensor static float current_amps1; // refers to the total amps drawn – based on an Attopilot Current sensor static float current_total1; // Used to track if the battery is low - LED output flashes when the batt is low static bool low_batt = false; //////////////////////////////////////////////////////////////////////////////// // Altitude //////////////////////////////////////////////////////////////////////////////// // The pressure at home location - calibrated at arming static int32_t ground_pressure; // The ground temperature at home location - calibrated at arming static int16_t ground_temperature; // The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP static int32_t altitude_error; // The cm/s we are moving up or down - Positive = UP static int16_t climb_rate; // The altitude as reported by Sonar in cm – Values are 20 to 700 generally. static int16_t sonar_alt; // The previous altitude as reported by Sonar in cm for calculation of Climb Rate static int16_t old_sonar_alt; // The climb_rate as reported by sonar in cm/s static int16_t sonar_rate; // The altitude as reported by Baro in cm – Values can be quite high static int32_t baro_alt; // The previous altitude as reported by Baro in cm for calculation of Climb Rate static int32_t old_baro_alt; // The climb_rate as reported by Baro in cm/s static int16_t baro_rate; // static boolean reset_throttle_flag; //////////////////////////////////////////////////////////////////////////////// // flight modes //////////////////////////////////////////////////////////////////////////////// // Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes // Each Flight mode is a unique combination of these modes // // The current desired control scheme for Yaw static byte yaw_mode; // The current desired control scheme for roll and pitch / navigation static byte roll_pitch_mode; // The current desired control scheme for altitude hold static byte throttle_mode; //////////////////////////////////////////////////////////////////////////////// // flight specific //////////////////////////////////////////////////////////////////////////////// // Flag for monitoring the status of flight // We must be in the air with throttle for 5 seconds before this flag is true // This flag is reset when we are in a manual throttle mode with 0 throttle or disarmed static boolean takeoff_complete; // Used to record the most recent time since we enaged the throttle to take off static int32_t takeoff_timer; // Used to see if we have landed and if we should shut our engines - not fully implemented static boolean land_complete = true; // used to manually override throttle in interactive Alt hold modes static int16_t manual_boost; // An additional throttle added to keep the copter at the same altitude when banking static int16_t angle_boost; // Push copter down for clean landing static int16_t landing_boost; //////////////////////////////////////////////////////////////////////////////// // Navigation general //////////////////////////////////////////////////////////////////////////////// // The location of the copter in relation to home, updated every GPS read static int32_t home_to_copter_bearing; // distance between plane and home in cm static int32_t home_distance; // distance between plane and next_WP in cm static int32_t wp_distance; //////////////////////////////////////////////////////////////////////////////// // 3D Location vectors //////////////////////////////////////////////////////////////////////////////// // home location is stored when we have a good GPS lock and arm the copter // Can be reset each the copter is re-armed static struct Location home; // Flag for if we have g_gps lock and have set the home location static boolean home_is_set; // Current location of the copter static struct Location current_loc; // Next WP is the desired location of the copter - the next waypoint or loiter location static struct Location next_WP; // Prev WP is used to get the optimum path from one WP to the next static struct Location prev_WP; // Holds the current loaded command from the EEPROM for navigation static struct Location command_nav_queue; // Holds the current loaded command from the EEPROM for conditional scripts static struct Location command_cond_queue; // Holds the current loaded command from the EEPROM for guided mode static struct Location guided_WP; //////////////////////////////////////////////////////////////////////////////// // Crosstrack //////////////////////////////////////////////////////////////////////////////// // deg * 100, The original angle to the next_WP when the next_WP was set // Also used to check when we pass a WP static int32_t original_target_bearing; // The amount of angle correction applied to target_bearing to bring the copter back on its optimum path static int16_t crosstrack_error; //////////////////////////////////////////////////////////////////////////////// // Navigation Roll/Pitch functions //////////////////////////////////////////////////////////////////////////////// // all angles are deg * 100 : target yaw angle // The Commanded ROll from the autopilot. static int32_t nav_roll; // The Commanded pitch from the autopilot. negative Pitch means go forward. static int32_t nav_pitch; // The desired bank towards North (Positive) or South (Negative) // Don't be fooled by the fact that Pitch is reversed from Roll in its sign! static int16_t nav_lat; // The desired bank towards East (Positive) or West (Negative) static int16_t nav_lon; // This may go away, but for now I'm tracking the desired bank before we apply the Wind compensation I term // This is mainly for debugging static int16_t nav_lat_p; static int16_t nav_lon_p; // The Commanded ROll from the autopilot based on optical flow sensor. static int32_t of_roll = 0; // The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward. static int32_t of_pitch = 0; //////////////////////////////////////////////////////////////////////////////// // Navigation Throttle control //////////////////////////////////////////////////////////////////////////////// // The Commanded Throttle from the autopilot. static int16_t nav_throttle; // 0-1000 for throttle control // This is a simple counter to track the amount of throttle used during flight // This could be useful later in determining and debuging current usage and predicting battery life static uint32_t throttle_integrator; // This is a future value for replacing the throttle_cruise setup procedure. It's an average of throttle control // that is generated when the climb rate is within a certain threshold //static float throttle_avg = THROTTLE_CRUISE; // This is a flag used to trigger the updating of nav_throttle at 10hz static bool invalid_throttle; // Used to track the altitude offset for climbrate control //static int32_t target_altitude; //////////////////////////////////////////////////////////////////////////////// // Climb rate control //////////////////////////////////////////////////////////////////////////////// // Time when we intiated command in millis - used for controlling decent rate // The orginal altitude used to base our new altitude during decent static int32_t original_altitude; // Used to track the altitude offset for climbrate control static int32_t target_altitude; static uint32_t alt_change_timer; static int8_t alt_change_flag; static uint32_t alt_change; //////////////////////////////////////////////////////////////////////////////// // Navigation Yaw control //////////////////////////////////////////////////////////////////////////////// // The Commanded Yaw from the autopilot. static int32_t nav_yaw; // A speed governer for Yaw control - limits the rate the quad can be turned by the autopilot static int32_t auto_yaw; // Used to manage the Yaw hold capabilities - // Options include: no tracking, point at next wp, or at a target static byte yaw_tracking = MAV_ROI_WPNEXT; // In AP Mission scripting we have a fine level of control for Yaw // This is our initial angle for relative Yaw movements static int32_t command_yaw_start; // Timer values used to control the speed of Yaw movements static uint32_t command_yaw_start_time; static uint16_t command_yaw_time; // how long we are turning static int32_t command_yaw_end; // what angle are we trying to be // how many degrees will we turn static int32_t command_yaw_delta; // Deg/s we should turn static int16_t command_yaw_speed; // Direction we will turn – 1 = CW, 0 or -1 = CCW static byte command_yaw_dir; // Direction we will turn – 1 = relative, 0 = Absolute static byte command_yaw_relative; // Yaw will point at this location if yaw_tracking is set to MAV_ROI_LOCATION static struct Location target_WP; //////////////////////////////////////////////////////////////////////////////// // Repeat Mission Scripting Command //////////////////////////////////////////////////////////////////////////////// // The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc static byte event_id; // Used to manage the timimng of repeating events static uint32_t event_timer; // How long to delay the next firing of event in millis static uint16_t event_delay; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice static int16_t event_repeat; // per command value, such as PWM for servos static int16_t event_value; // the stored value used to undo commands - such as original PWM command static int16_t event_undo_value; //////////////////////////////////////////////////////////////////////////////// // Delay Mission Scripting Command //////////////////////////////////////////////////////////////////////////////// static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) static uint32_t condition_start; //////////////////////////////////////////////////////////////////////////////// // IMU variables //////////////////////////////////////////////////////////////////////////////// // Integration time for the gyros (DCM algorithm) // Updated with th efast loop static float G_Dt = 0.02; // The rotated accelerometer values // Used by Z accel control, updated at 10hz Vector3f accels_rot; //////////////////////////////////////////////////////////////////////////////// // Performance monitoring //////////////////////////////////////////////////////////////////////////////// // Used to manage the rate of performance logging messages static int16_t perf_mon_counter; // The number of GPS fixes we have had static int16_t gps_fix_count; // gps_watchdog check for bad reads and if we miss 12 in a row, we stop navigating // by lowering nav_lat and navlon to 0 gradually static byte gps_watchdog; // System Timers // -------------- // Time in microseconds of main control loop static uint32_t fast_loopTimer; // Time in microseconds of 50hz control loop static uint32_t fiftyhz_loopTimer; // Counters for branching from 10 hz control loop static byte medium_loopCounter; // Counters for branching from 3 1/3hz control loop static byte slow_loopCounter; // Counters for branching at 1 hz static byte counter_one_herz; // Stat machine counter for Simple Mode static byte simple_counter; // used to track the elapsed time between GPS reads static uint32_t nav_loopTimer; // Delta Time in milliseconds for navigation computations, updated with every good GPS read static float dTnav; // Counters for branching from 4 minute control loop used to save Compass offsets static int16_t superslow_loopCounter; // RTL Autoland Timer static uint32_t auto_land_timer; // disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight static uint8_t auto_disarming_counter; // Tracks if GPS is enabled based on statup routine // If we do not detect GPS at startup, we stop trying and assume GPS is not connected static bool GPS_enabled = false; // Set true if we have new PWM data to act on from the Radio static bool new_radio_frame; // Used to auto exit the in-flight leveler static int16_t auto_level_counter; // Reference to the AP relay object - APM1 only AP_Relay relay; // APM2 only #if USB_MUX_PIN > 0 static bool usb_connected; #endif //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// void setup() { memcheck_init(); init_ardupilot(); } void loop() { uint32_t timer = micros(); // We want this to execute fast // ---------------------------- if ((timer - fast_loopTimer) >= 5000) { //PORTK |= B00010000; G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops fast_loopTimer = timer; // Execute the fast loop // --------------------- fast_loop(); } // port manipulation for external timing of main loops //PORTK &= B11101111; if ((timer - fiftyhz_loopTimer) >= 20000) { // store the micros for the 50 hz timer fiftyhz_loopTimer = timer; // port manipulation for external timing of main loops //PORTK |= B01000000; // reads all of the necessary trig functions for cameras, throttle, etc. // -------------------------------------------------------------------- update_trig(); // update our velocity estimate based on IMU at 50hz // ------------------------------------------------- estimate_velocity(); // check for new GPS messages // -------------------------- if(GPS_enabled){ update_GPS(); } // perform 10hz tasks // ------------------ medium_loop(); // Stuff to run at full 50hz, but after the med loops // -------------------------------------------------- fifty_hz_loop(); counter_one_herz++; // trgger our 1 hz loop if(counter_one_herz >= 50){ super_slow_loop(); counter_one_herz = 0; } perf_mon_counter++; if (perf_mon_counter > 600 ) { if (g.log_bitmask & MASK_LOG_PM) Log_Write_Performance(); gps_fix_count = 0; perf_mon_counter = 0; } //PORTK &= B10111111; } } // PORTK |= B01000000; // PORTK &= B10111111; // Main loop static void fast_loop() { // try to send any deferred messages if the serial port now has // some space available gcs_send_message(MSG_RETRY_DEFERRED); // Read radio // ---------- read_radio(); // IMU DCM Algorithm read_AHRS(); // custom code/exceptions for flight modes // --------------------------------------- update_yaw_mode(); update_roll_pitch_mode(); // write out the servo PWM values // ------------------------------ set_servos_4(); //if(motor_armed) //Log_Write_Attitude(); // agmatthews - USERHOOKS #ifdef USERHOOK_FASTLOOP USERHOOK_FASTLOOP #endif } static void medium_loop() { // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS and Compass //----------------------------------------- case 0: medium_loopCounter++; //if(GPS_enabled){ // update_GPS(); //} #if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode if(g.compass_enabled){ if (compass.read()) { compass.calculate(dcm.get_dcm_matrix()); // Calculate heading compass.null_offsets(dcm.get_dcm_matrix()); } } #endif // auto_trim, uses an auto_level algorithm auto_trim(); // record throttle output // ------------------------------ throttle_integrator += g.rc_3.servo_out; break; // This case performs some navigation computations //------------------------------------------------ case 1: medium_loopCounter++; // Auto control modes: if(nav_ok){ // clear nav flag nav_ok = false; // calculate the copter's desired bearing and WP distance // ------------------------------------------------------ if(navigate()){ // this calculates the velocity for Loiter // only called when there is new data // ---------------------------------- calc_XY_velocity(); // If we have optFlow enabled we can grab a more accurate speed // here and override the speed from the GPS // ---------------------------------------- //#ifdef OPTFLOW_ENABLED //if(g.optflow_enabled && current_loc.alt < 500){ // // optflow wont be enabled on 1280's // x_GPS_speed = optflow.x_cm; // y_GPS_speed = optflow.y_cm; //} //#endif // control mode specific updates // ----------------------------- update_navigation(); if (g.log_bitmask & MASK_LOG_NTUN) Log_Write_Nav_Tuning(); } } break; // command processing //------------------- case 2: medium_loopCounter++; // Read altitude from sensors // -------------------------- #if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode update_altitude(); #endif // invalidate the throttle hold value // ---------------------------------- invalid_throttle = true; break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: medium_loopCounter++; // perform next command // -------------------- if(control_mode == AUTO){ if(home_is_set == true && g.command_total > 1){ update_commands(); } } if(motor_armed){ if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) Log_Write_Attitude(); if (g.log_bitmask & MASK_LOG_CTUN) Log_Write_Control_Tuning(); } // send all requested output streams with rates requested // between 5 and 45 Hz gcs_data_stream_send(5,45); if (g.log_bitmask & MASK_LOG_MOTORS) Log_Write_Motors(); break; // This case controls the slow loop //--------------------------------- case 4: medium_loopCounter = 0; if (g.battery_monitoring != 0){ read_battery(); } // Accel trims = hold > 2 seconds // Throttle cruise = switch less than 1 second // -------------------------------------------- read_trim_switch(); // Check for engine arming // ----------------------- arm_motors(); // Do an extra baro read // --------------------- #if HIL_MODE != HIL_MODE_ATTITUDE barometer.read(); #endif // agmatthews - USERHOOKS #ifdef USERHOOK_MEDIUMLOOP USERHOOK_MEDIUMLOOP #endif slow_loop(); break; default: // this is just a catch all // ------------------------ medium_loopCounter = 0; break; } } // stuff that happens at 50 hz // --------------------------- static void fifty_hz_loop() { // moved to slower loop // -------------------- update_throttle_mode(); // Read Sonar // ---------- # if CONFIG_SONAR == ENABLED if(g.sonar_enabled){ sonar_alt = sonar.read(); } #endif // syncronise optical flow reads with altitude reads #ifdef OPTFLOW_ENABLED if(g.optflow_enabled){ update_optical_flow(); } #endif // agmatthews - USERHOOKS #ifdef USERHOOK_50HZLOOP USERHOOK_50HZLOOP #endif #if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME // HIL for a copter needs very fast update of the servo values gcs_send_message(MSG_RADIO_OUT); #endif camera_stabilization(); # if HIL_MODE == HIL_MODE_DISABLED if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Log_Write_Attitude(); if (g.log_bitmask & MASK_LOG_RAW) Log_Write_Raw(); #endif // kick the GCS to process uplink data gcs_update(); gcs_data_stream_send(45,1000); #if FRAME_CONFIG == TRI_FRAME // servo Yaw g.rc_4.calc_pwm(); APM_RC.OutputCh(CH_TRI_YAW, g.rc_4.radio_out); #endif } static void slow_loop() { // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter){ case 0: slow_loopCounter++; superslow_loopCounter++; if(superslow_loopCounter > 1200){ #if HIL_MODE != HIL_MODE_ATTITUDE if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled){ compass.save_offsets(); superslow_loopCounter = 0; } #endif } break; case 1: slow_loopCounter++; // Read 3-position switch on radio // ------------------------------- read_control_switch(); // agmatthews - USERHOOKS #ifdef USERHOOK_SLOWLOOP USERHOOK_SLOWLOOP #endif break; case 2: slow_loopCounter = 0; update_events(); // blink if we are armed update_lights(); // send all requested output streams with rates requested // between 3 and 5 Hz gcs_data_stream_send(3,5); if(g.radio_tuning > 0) tuning(); #if MOTOR_LEDS == 1 update_motor_leds(); #endif #if USB_MUX_PIN > 0 check_usb_mux(); #endif break; default: slow_loopCounter = 0; break; } } #define AUTO_ARMING_DELAY 60 // 1Hz loop static void super_slow_loop() { if (g.log_bitmask & MASK_LOG_CUR) Log_Write_Current(); // this function disarms the copter if it has been sitting on the ground for any moment of time greater than 30s // but only of the control mode is manual if((control_mode <= ACRO) && (g.rc_3.control_in == 0)){ auto_disarming_counter++; if(auto_disarming_counter == AUTO_ARMING_DELAY){ init_disarm_motors(); }else if (auto_disarming_counter > AUTO_ARMING_DELAY){ auto_disarming_counter = AUTO_ARMING_DELAY + 1; } }else{ auto_disarming_counter = 0; } gcs_send_message(MSG_HEARTBEAT); gcs_data_stream_send(1,3); // agmatthews - USERHOOKS #ifdef USERHOOK_SUPERSLOWLOOP USERHOOK_SUPERSLOWLOOP #endif /* Serial.printf("alt %d, next.alt %d, alt_err: %d, cruise: %d, Alt_I:%1.2f, wp_dist %d, tar_bear %d, home_d %d, homebear %d\n", current_loc.alt, next_WP.alt, altitude_error, g.throttle_cruise.get(), g.pi_alt_hold.get_integrator(), wp_distance, target_bearing, home_distance, home_to_copter_bearing); */ } // updated at 10 Hz #ifdef OPTFLOW_ENABLED static void update_optical_flow(void) { static int log_counter = 0; optflow.update(); optflow.update_position(dcm.roll, dcm.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow // write to log log_counter++; if( log_counter >= 5 ) { log_counter = 0; if (g.log_bitmask & MASK_LOG_OPTFLOW){ Log_Write_Optflow(); } } /*if(g.optflow_enabled && current_loc.alt < 500){ if(GPS_enabled){ // if we have a GPS, we add some detail to the GPS // XXX this may not ne right current_loc.lng += optflow.vlon; current_loc.lat += optflow.vlat; // some sort of error correction routine //current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction //current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction }else{ // if we do not have a GPS, use relative from 0 for lat and lon current_loc.lng = optflow.vlon; current_loc.lat = optflow.vlat; } // OK to run the nav routines nav_ok = true; }*/ } #endif static void update_GPS(void) { // A counter that is used to grab at least 10 reads before commiting the Home location static byte ground_start_count = 10; g_gps->update(); update_GPS_light(); //current_loc.lng = 377697000; // Lon * 10 * *7 //current_loc.lat = -1224318000; // Lat * 10 * *7 //current_loc.alt = 100; // alt * 10 * *7 //return; if(gps_watchdog < 30){ gps_watchdog++; }else{ // after 12 reads we guess we may have lost GPS signal, stop navigating // we have lost GPS signal for a moment. Reduce our error to avoid flyaways nav_roll >>= 1; nav_pitch >>= 1; } if (g_gps->new_data && g_gps->fix) { // clear new data flag g_gps->new_data = false; gps_watchdog = 0; // OK to run the nav routines nav_ok = true; // for performance // --------------- gps_fix_count++; // used to calculate speed in X and Y, iterms // ------------------------------------------ dTnav = (float)(millis() - nav_loopTimer)/ 1000.0; nav_loopTimer = millis(); // prevent runup from bad GPS // -------------------------- dTnav = min(dTnav, 1.0); if(ground_start_count > 1){ ground_start_count--; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { ground_start_count = 5; }else{ // block until we get a good fix // ----------------------------- while (!g_gps->new_data || !g_gps->fix) { g_gps->update(); // we need GCS update while waiting for GPS, to ensure // we react to HIL mavlink gcs_update(); } init_home(); ground_start_count = 0; } } current_loc.lng = g_gps->longitude; // Lon * 10 * *7 current_loc.lat = g_gps->latitude; // Lat * 10 * *7 if (g.log_bitmask & MASK_LOG_GPS){ Log_Write_GPS(); } #if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode update_altitude(); #endif } } void update_yaw_mode(void) { switch(yaw_mode){ case YAW_ACRO: g.rc_4.servo_out = get_rate_yaw(g.rc_4.control_in); return; break; case YAW_HOLD: // calcualte new nav_yaw offset if (control_mode <= STABILIZE){ nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in); }else{ nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, 1); } break; case YAW_LOOK_AT_HOME: //nav_yaw updated in update_navigation() break; case YAW_AUTO: nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20); // 40 deg a second nav_yaw = wrap_360(nav_yaw); break; } // Yaw control g.rc_4.servo_out = get_stabilize_yaw(nav_yaw); //Serial.printf("4: %d\n",g.rc_4.servo_out); } void update_roll_pitch_mode(void) { int control_roll, control_pitch; // hack to do auto_flip - need to remove, no one is using. #if CH7_OPTION == CH7_FLIP if (do_flip){ roll_flip(); return; } #endif switch(roll_pitch_mode){ case ROLL_PITCH_ACRO: // ACRO does not get SIMPLE mode ability g.rc_1.servo_out = get_rate_roll(g.rc_1.control_in); g.rc_2.servo_out = get_rate_pitch(g.rc_2.control_in); break; case ROLL_PITCH_STABLE: // apply SIMPLE mode transform if(do_simple && new_radio_frame){ update_simple_mode(); } // in this mode, nav_roll and nav_pitch = the iterm g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in); g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in); break; case ROLL_PITCH_AUTO: // apply SIMPLE mode transform if(do_simple && new_radio_frame){ update_simple_mode(); } // mix in user control with Nav control control_roll = g.rc_1.control_mix(nav_roll); control_pitch = g.rc_2.control_mix(nav_pitch); g.rc_1.servo_out = get_stabilize_roll(control_roll); g.rc_2.servo_out = get_stabilize_pitch(control_pitch); break; case ROLL_PITCH_STABLE_OF: // apply SIMPLE mode transform if(do_simple && new_radio_frame){ update_simple_mode(); } // mix in user control with optical flow g.rc_1.servo_out = get_stabilize_roll(get_of_roll(g.rc_1.control_in)); g.rc_2.servo_out = get_stabilize_pitch(get_of_pitch(g.rc_2.control_in)); break; } // clear new radio frame info new_radio_frame = false; } // new radio frame is used to make sure we only call this at 50hz void update_simple_mode(void) { static float simple_sin_y=0, simple_cos_x=0; // used to manage state machine // which improves speed of function simple_counter++; int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100; if (simple_counter == 1){ // roll simple_cos_x = sin(radians(90 - delta)); }else if (simple_counter > 2){ // pitch simple_sin_y = cos(radians(90 - delta)); simple_counter = 0; } // Rotate input by the initial bearing int control_roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y; int control_pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x); g.rc_1.control_in = control_roll; g.rc_2.control_in = control_pitch; } #define THROTTLE_FILTER_SIZE 4 // 50 hz update rate, not 250 // controls all throttle behavior void update_throttle_mode(void) { int16_t throttle_out; #if AUTO_THROTTLE_HOLD != 0 static float throttle_avg = THROTTLE_CRUISE; #endif switch(throttle_mode){ case THROTTLE_MANUAL: if (g.rc_3.control_in > 0){ #if FRAME_CONFIG == HELI_FRAME g.rc_3.servo_out = heli_get_angle_boost(g.rc_3.control_in); #else if (control_mode == ACRO){ g.rc_3.servo_out = g.rc_3.control_in; }else{ angle_boost = get_angle_boost(g.rc_3.control_in); g.rc_3.servo_out = g.rc_3.control_in + angle_boost; } #endif #if AUTO_THROTTLE_HOLD != 0 // calc average throttle if ((g.rc_3.control_in > MINIMUM_THROTTLE) && abs(climb_rate) < 60){ throttle_avg = throttle_avg * .98 + (float)g.rc_3.control_in * .02; g.throttle_cruise = throttle_avg; } #endif // Code to manage the Copter state if ((millis() - takeoff_timer) > 5000){ // we must be in the air by now takeoff_complete = true; land_complete = false; }else{ // reset these I terms to prevent awkward tipping on takeoff reset_rate_I(); reset_stability_I(); } }else{ // we are on the ground takeoff_complete = false; // reset baro data if we are near home if(home_distance < 400 || GPS_enabled == false){ // 4m from home // causes Baro to do a quick recalibration // XXX commented until further testing // reset_baro(); } // reset out i terms and takeoff timer // ----------------------------------- reset_rate_I(); reset_stability_I(); // remember our time since takeoff // ------------------------------- takeoff_timer = millis(); // make sure we also request 0 throttle out // so the props stop ... properly // ---------------------------------------- g.rc_3.servo_out = 0; } break; case THROTTLE_HOLD: // allow interactive changing of atitude adjust_altitude(); // fall through case THROTTLE_AUTO: // calculate angle boost angle_boost = get_angle_boost(g.throttle_cruise); // manual command up or down? if(manual_boost != 0){ #if FRAME_CONFIG == HELI_FRAME throttle_out = heli_get_angle_boost(g.throttle_cruise + manual_boost); #else throttle_out = g.throttle_cruise + angle_boost + manual_boost; #endif //force a reset of the altitude change clear_new_altitude(); /* int16_t iterm = g.pi_alt_hold.get_integrator(); Serial.printf("tar_alt: %d, actual_alt: %d \talt_err: %d, \t manb: %d, iterm %d\n", next_WP.alt, current_loc.alt, altitude_error, manual_boost, iterm); //*/ reset_throttle_flag = true; }else{ if(reset_throttle_flag) { set_new_altitude(max(current_loc.alt, 100)); reset_throttle_flag = false; } // 10hz, don't run up i term if(invalid_throttle && motor_auto_armed == true){ // how far off are we altitude_error = get_altitude_error(); // get the AP throttle, if landing boost > 0 we are actually Landing // This allows us to grab just the compensation. if(landing_boost > 0) nav_throttle = get_nav_throttle(-200); else nav_throttle = get_nav_throttle(altitude_error); // clear the new data flag invalid_throttle = false; /* Serial.printf("tar_alt: %d, actual_alt: %d \talt_err: %d, \tnav_thr: %d, \talt Int: %d\n", next_WP.alt, current_loc.alt, altitude_error, nav_throttle, (int16_t)g.pi_alt_hold.get_integrator()); //*/ } #if FRAME_CONFIG == HELI_FRAME throttle_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle + get_z_damping() - landing_boost); #else throttle_out = g.throttle_cruise + nav_throttle + angle_boost + get_z_damping() - landing_boost; #endif } // light filter of output g.rc_3.servo_out = (g.rc_3.servo_out * (THROTTLE_FILTER_SIZE - 1) + throttle_out) / THROTTLE_FILTER_SIZE; break; } } // called after a GPS read static void update_navigation() { // wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS // ------------------------------------------------------------------------ switch(control_mode){ case AUTO: // note: wp_control is handled by commands_logic verify_commands(); // calculates desired Yaw update_auto_yaw(); // calculates the desired Roll and Pitch update_nav_wp(); break; case GUIDED: wp_control = WP_MODE; // check if we are close to point > loiter wp_verify_byte = 0; verify_nav_wp(); if (wp_control == WP_MODE) { update_auto_yaw(); } else { set_mode(LOITER); } update_nav_wp(); break; case RTL: // We have reached Home if((wp_distance <= g.waypoint_radius) || check_missed_wp()){ // if this value > 0, we are set to trigger auto_land after 30 seconds set_mode(LOITER); auto_land_timer = millis(); break; } // We wait until we've reached out new altitude before coming home // Arg doesn't work, it //if(alt_change_flag != REACHED_ALT){ // wp_control = NO_NAV_MODE; //}else{ wp_control = WP_MODE; // calculates desired Yaw #if FRAME_CONFIG == HELI_FRAME update_auto_yaw(); #endif //} // calculates the desired Roll and Pitch update_nav_wp(); break; // switch passthrough to LOITER case LOITER: case POSITION: // This feature allows us to reposition the quad when the user lets // go of the sticks if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500){ // this sets the copter to not try and nav while we control it wp_control = NO_NAV_MODE; // reset LOITER to current position next_WP.lat = current_loc.lat; next_WP.lng = current_loc.lng; }else{ // this is also set by GPS in update_nav wp_control = LOITER_MODE; } // Kick us out of loiter and begin landing if the auto_land_timer is set if(auto_land_timer != 0 && (millis() - auto_land_timer) > (uint32_t)g.auto_land_timeout.get()){ // just to make sure we clear the timer auto_land_timer = 0; set_mode(LAND); } // calculates the desired Roll and Pitch update_nav_wp(); break; case LAND: verify_land(); // calculates the desired Roll and Pitch update_nav_wp(); break; case CIRCLE: yaw_tracking = MAV_ROI_WPNEXT; wp_control = CIRCLE_MODE; // calculates desired Yaw update_auto_yaw(); update_nav_wp(); break; case STABILIZE: wp_control = NO_NAV_MODE; update_nav_wp(); break; } // are we in SIMPLE mode? if(do_simple && g.super_simple){ // get distance to home if(home_distance > 1000){ // 10m from home // we reset the angular offset to be a vector from home to the quad initial_simple_bearing = home_to_copter_bearing; //Serial.printf("ISB: %d\n", initial_simple_bearing); } } if(yaw_mode == YAW_LOOK_AT_HOME){ if(home_is_set){ //nav_yaw = point_at_home_yaw(); nav_yaw = get_bearing(¤t_loc, &home); } else { nav_yaw = 0; } } } static void read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------- #if HIL_MODE != HIL_MODE_DISABLED // update hil before dcm update gcs_update(); #endif dcm.update_DCM_fast(); omega = imu.get_gyro(); } static void update_trig(void){ Vector2f yawvector; Matrix3f temp = dcm.get_dcm_matrix(); yawvector.x = temp.a.x; // sin yawvector.y = temp.b.x; // cos yawvector.normalize(); sin_pitch_y = -temp.c.x; // level = 0 cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x)); // level = 1 sin_roll_y = temp.c.y / cos_pitch_x; // level = 0 cos_roll_x = temp.c.z / cos_pitch_x; // level = 1 sin_yaw_y = yawvector.x; // 1y = north cos_yaw_x = yawvector.y; // 0x = north //flat: // 0 ° = cos_yaw: 0.00, sin_yaw: 1.00, // 90° = cos_yaw: 1.00, sin_yaw: 0.00, // 180 = cos_yaw: 0.00, sin_yaw: -1.00, // 270 = cos_yaw: -1.00, sin_yaw: 0.00, } // updated at 10hz static void update_altitude() { #if HIL_MODE == HIL_MODE_ATTITUDE // we are in the SIM, fake out the baro and Sonar int fake_relative_alt = g_gps->altitude - gps_base_alt; baro_alt = fake_relative_alt; sonar_alt = fake_relative_alt; baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz old_baro_alt = baro_alt; #else // This is real life // read in Actual Baro Altitude baro_alt = (baro_alt + read_barometer()) >> 1; // calc the vertical accel rate int temp = (baro_alt - old_baro_alt) * 10; baro_rate = (temp + baro_rate) >> 1; old_baro_alt = baro_alt; // sonar_alt is calculated in a faster loop and filtered with a mode filter #endif if(g.sonar_enabled){ // filter out offset float scale; // calc rate of change for Sonar #if HIL_MODE == HIL_MODE_ATTITUDE // we are in the SIM, fake outthe Sonar rate sonar_rate = baro_rate; #else // This is real life // calc the vertical accel rate // positive = going up. sonar_rate = (sonar_alt - old_sonar_alt) * 10; old_sonar_alt = sonar_alt; #endif if(baro_alt < 800){ #if SONAR_TILT_CORRECTION == 1 // correct alt for angle of the sonar float temp = cos_pitch_x * cos_roll_x; temp = max(temp, 0.707); sonar_alt = (float)sonar_alt * temp; #endif scale = (sonar_alt - 400) / 200; scale = constrain(scale, 0, 1); // solve for a blended altitude current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt; // solve for a blended climb_rate climb_rate = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale; }else{ // we must be higher than sonar (>800), don't get tricked by bad sonar reads current_loc.alt = baro_alt + home.alt; // home alt = 0 // dont blend, go straight baro climb_rate = baro_rate; } }else{ // NO Sonar case current_loc.alt = baro_alt + home.alt; climb_rate = baro_rate; } // manage bad data climb_rate = constrain(climb_rate, -300, 300); // update the target altitude next_WP.alt = get_new_altitude(); } static void adjust_altitude() { if(g.rc_3.control_in <= 180){ // we remove 0 to 100 PWM from hover manual_boost = g.rc_3.control_in - 180; manual_boost = max(-120, manual_boost); update_throttle_cruise(); }else if (g.rc_3.control_in >= 650){ // we add 0 to 100 PWM to hover manual_boost = g.rc_3.control_in - 650; update_throttle_cruise(); }else { manual_boost = 0; } } static void tuning(){ tuning_value = (float)g.rc_6.control_in / 1000.0; switch(g.radio_tuning){ case CH6_DAMP: g.rc_6.set_range(0,80); // 0 to 1 g.stablize_d.set(tuning_value); break; case CH6_STABILIZE_KP: g.rc_6.set_range(0,8000); // 0 to 8 g.pi_stabilize_roll.kP(tuning_value); g.pi_stabilize_pitch.kP(tuning_value); break; case CH6_STABILIZE_KI: g.rc_6.set_range(0,300); // 0 to .3 tuning_value = (float)g.rc_6.control_in / 1000.0; g.pi_stabilize_roll.kI(tuning_value); g.pi_stabilize_pitch.kI(tuning_value); break; case CH6_RATE_KP: g.rc_6.set_range(40,300); // 0 to .3 g.pi_rate_roll.kP(tuning_value); g.pi_rate_pitch.kP(tuning_value); g.pi_acro_roll.kP(tuning_value); g.pi_acro_pitch.kP(tuning_value); break; case CH6_RATE_KI: g.rc_6.set_range(0,300); // 0 to .3 g.pi_rate_roll.kI(tuning_value); g.pi_rate_pitch.kI(tuning_value); break; case CH6_YAW_KP: g.rc_6.set_range(0,1000); g.pi_stabilize_yaw.kP(tuning_value); break; case CH6_YAW_RATE_KP: g.rc_6.set_range(0,1000); g.pi_rate_yaw.kP(tuning_value); break; case CH6_THROTTLE_KP: g.rc_6.set_range(0,1000); // 0 to 1 g.pi_throttle.kP(tuning_value); break; case CH6_TOP_BOTTOM_RATIO: g.rc_6.set_range(800,1000); // .8 to 1 g.top_bottom_ratio = tuning_value; break; case CH6_RELAY: g.rc_6.set_range(0,1000); if (g.rc_6.control_in > 525) relay.on(); if (g.rc_6.control_in < 475) relay.off(); break; case CH6_TRAVERSE_SPEED: g.rc_6.set_range(0,1000); g.waypoint_speed_max = g.rc_6.control_in; break; case CH6_LOITER_P: g.rc_6.set_range(0,2000); g.pi_loiter_lat.kP(tuning_value); g.pi_loiter_lon.kP(tuning_value); break; case CH6_NAV_P: g.rc_6.set_range(0,6000); g.pi_nav_lat.kP(tuning_value); g.pi_nav_lon.kP(tuning_value); break; #if FRAME_CONFIG == HELI_FRAME case CH6_HELI_EXTERNAL_GYRO: g.rc_6.set_range(1000,2000); g.heli_ext_gyro_gain = tuning_value * 1000; break; #endif case CH6_THR_HOLD_KP: g.rc_6.set_range(0,1000); // 0 to 1 g.pi_alt_hold.kP(tuning_value); break; case CH6_OPTFLOW_KP: g.rc_6.set_range(0,5000); // 0 to 5 g.pi_optflow_roll.kP(tuning_value); g.pi_optflow_pitch.kP(tuning_value); break; case CH6_OPTFLOW_KI: g.rc_6.set_range(0,10000); // 0 to 10 g.pi_optflow_roll.kI(tuning_value); g.pi_optflow_pitch.kI(tuning_value); break; case CH6_OPTFLOW_KD: g.rc_6.set_range(0,200); // 0 to 0.2 g.pi_optflow_roll.kD(tuning_value); g.pi_optflow_pitch.kD(tuning_value); break; } } // Outputs Nav_Pitch and Nav_Roll static void update_nav_wp() { if(wp_control == LOITER_MODE){ // calc error to target calc_location_error(&next_WP); // use error as the desired rate towards the target calc_loiter(long_error, lat_error); // rotate pitch and roll to the copter frame of reference calc_loiter_pitch_roll(); }else if(wp_control == CIRCLE_MODE){ // check if we have missed the WP int loiter_delta = (target_bearing - old_target_bearing)/100; // reset the old value old_target_bearing = target_bearing; // wrap values if (loiter_delta > 180) loiter_delta -= 360; if (loiter_delta < -180) loiter_delta += 360; // sum the angle around the WP loiter_sum += loiter_delta; // create a virtual waypoint that circles the next_WP // Count the degrees we have circulated the WP //int circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100; circle_angle += (circle_rate * dTnav); //1° = 0.0174532925 radians // wrap if (circle_angle > 6.28318531) circle_angle -= 6.28318531; circle_WP.lng = next_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp); circle_WP.lat = next_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle)); // calc the lat and long error to the target calc_location_error(&circle_WP); // use error as the desired rate towards the target // nav_lon, nav_lat is calculated calc_loiter(long_error, lat_error); //CIRCLE: angle:29, dist:0, lat:400, lon:242 // rotate pitch and roll to the copter frame of reference calc_loiter_pitch_roll(); // debug //int angleTest = degrees(circle_angle); //int nroll = nav_roll; //int npitch = nav_pitch; //Serial.printf("CIRCLE: angle:%d, dist:%d, X:%d, Y:%d, P:%d, R:%d \n", angleTest, (int)wp_distance , (int)long_error, (int)lat_error, npitch, nroll); }else if(wp_control == WP_MODE){ // calc error to target calc_location_error(&next_WP); int16_t speed = calc_desired_speed(g.waypoint_speed_max); // use error as the desired rate towards the target calc_nav_rate(speed); // rotate pitch and roll to the copter frame of reference calc_loiter_pitch_roll(); }else if(wp_control == NO_NAV_MODE){ // clear out our nav so we can do things like land straight down // We bring in our iterms for wind control, but we don't navigate nav_lon = g.pi_loiter_lon.get_integrator(); nav_lat = g.pi_loiter_lat.get_integrator(); // rotate pitch and roll to the copter frame of reference calc_loiter_pitch_roll(); } } static void update_auto_yaw() { // If we Loiter, don't start Yawing, allow Yaw control if(wp_control == LOITER_MODE) return; // this tracks a location so the copter is always pointing towards it. if(yaw_tracking == MAV_ROI_LOCATION){ auto_yaw = get_bearing(¤t_loc, &target_WP); }else if(yaw_tracking == MAV_ROI_WPNEXT){ // Point towards next WP auto_yaw = target_bearing; } // MAV_ROI_NONE = basic Yaw hold }