/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "Plane.h" /* altitude handling routines. These cope with both barometric control and terrain following control */ /* adjust altitude target depending on mode */ void Plane::adjust_altitude_target() { Location target_location; if (control_mode == &mode_fbwb || control_mode == &mode_cruise) { return; } #if OFFBOARD_GUIDED == ENABLED if (control_mode == &mode_guided && ((guided_state.target_alt_time_ms != 0) || guided_state.target_alt > -0.001 )) { // target_alt now defaults to -1, and _time_ms defaults to zero. // offboard altitude demanded uint32_t now = AP_HAL::millis(); float delta = 1e-3f * (now - guided_state.target_alt_time_ms); guided_state.target_alt_time_ms = now; // determine delta accurately as a float float delta_amt_f = delta * guided_state.target_alt_accel; // then scale x100 to match last_target_alt and convert to a signed int32_t as it may be negative int32_t delta_amt_i = (int32_t)(100.0 * delta_amt_f); Location temp {}; temp.alt = guided_state.last_target_alt + delta_amt_i; // ...to avoid floats here, if (is_positive(guided_state.target_alt_accel)) { temp.alt = MIN(guided_state.target_alt, temp.alt); } else { temp.alt = MAX(guided_state.target_alt, temp.alt); } guided_state.last_target_alt = temp.alt; set_target_altitude_location(temp); } else #endif // OFFBOARD_GUIDED == ENABLED if (control_mode->update_target_altitude()) { // handled in mode specific code } else if (landing.is_flaring()) { // during a landing flare, use TECS_LAND_SINK as a target sink // rate, and ignores the target altitude set_target_altitude_location(next_WP_loc); } else if (landing.is_on_approach()) { landing.setup_landing_glide_slope(prev_WP_loc, next_WP_loc, current_loc, target_altitude.offset_cm); landing.adjust_landing_slope_for_rangefinder_bump(rangefinder_state, prev_WP_loc, next_WP_loc, current_loc, auto_state.wp_distance, target_altitude.offset_cm); } else if (landing.get_target_altitude_location(target_location)) { set_target_altitude_location(target_location); #if HAL_SOARING_ENABLED } else if (g2.soaring_controller.is_active() && g2.soaring_controller.get_throttle_suppressed()) { // Reset target alt to current alt, to prevent large altitude errors when gliding. set_target_altitude_location(current_loc); reset_offset_altitude(); #endif } else if (reached_loiter_target()) { // once we reach a loiter target then lock to the final // altitude target set_target_altitude_location(next_WP_loc); } else if (target_altitude.offset_cm != 0 && !current_loc.past_interval_finish_line(prev_WP_loc, next_WP_loc)) { // control climb/descent rate set_target_altitude_proportion(next_WP_loc, 1.0f-auto_state.wp_proportion); // stay within the range of the start and end locations in altitude constrain_target_altitude_location(next_WP_loc, prev_WP_loc); } else { set_target_altitude_location(next_WP_loc); } altitude_error_cm = calc_altitude_error_cm(); } /* setup for a gradual glide slope to the next waypoint, if appropriate */ void Plane::setup_glide_slope(void) { // establish the distance we are travelling to the next waypoint, // for calculating out rate of change of altitude auto_state.wp_distance = current_loc.get_distance(next_WP_loc); auto_state.wp_proportion = current_loc.line_path_proportion(prev_WP_loc, next_WP_loc); TECS_controller.set_path_proportion(auto_state.wp_proportion); update_flight_stage(); /* work out if we will gradually change altitude, or try to get to the new altitude as quickly as possible. */ switch (control_mode->mode_number()) { case Mode::Number::RTL: case Mode::Number::AVOID_ADSB: case Mode::Number::GUIDED: /* glide down slowly if above target altitude, but ascend more rapidly if below it. See https://github.com/ArduPilot/ardupilot/issues/39 */ if (above_location_current(next_WP_loc)) { set_offset_altitude_location(prev_WP_loc, next_WP_loc); } else { reset_offset_altitude(); } break; case Mode::Number::AUTO: // we only do glide slide handling in AUTO when above 20m or // when descending. The 20 meter threshold is arbitrary, and // is basically to prevent situations where we try to slowly // gain height at low altitudes, potentially hitting // obstacles. if (adjusted_relative_altitude_cm() > 2000 || above_location_current(next_WP_loc)) { set_offset_altitude_location(prev_WP_loc, next_WP_loc); } else { reset_offset_altitude(); } break; default: reset_offset_altitude(); break; } } /* return RTL altitude as AMSL cm */ int32_t Plane::get_RTL_altitude_cm() const { if (g.RTL_altitude_cm < 0) { return current_loc.alt; } return g.RTL_altitude_cm + home.alt; } /* return relative altitude in meters (relative to terrain, if available, or home otherwise) */ float Plane::relative_ground_altitude(bool use_rangefinder_if_available) { if (use_rangefinder_if_available && rangefinder_state.in_range) { return rangefinder_state.height_estimate; } #if HAL_QUADPLANE_ENABLED if (use_rangefinder_if_available && quadplane.in_vtol_land_final() && rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::Status::OutOfRangeLow) { // a special case for quadplane landing when rangefinder goes // below minimum. Consider our height above ground to be zero return 0; } #endif #if AP_TERRAIN_AVAILABLE float altitude; if (target_altitude.terrain_following && terrain.status() == AP_Terrain::TerrainStatusOK && terrain.height_above_terrain(altitude, true)) { return altitude; } #endif #if HAL_QUADPLANE_ENABLED if (quadplane.in_vtol_land_descent() && !(quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH)) { // when doing a VTOL landing we can use the waypoint height as // ground height. We can't do this if using the // LAND_FW_APPROACH as that uses the wp height as the approach // height return height_above_target(); } #endif return relative_altitude; } /* set the target altitude to the current altitude. This is used when setting up for altitude hold, such as when releasing elevator in CRUISE mode. */ void Plane::set_target_altitude_current(void) { // record altitude above sea level at the current time as our // target altitude target_altitude.amsl_cm = current_loc.alt; // reset any glide slope offset reset_offset_altitude(); #if AP_TERRAIN_AVAILABLE // also record the terrain altitude if possible float terrain_altitude; if (terrain_enabled_in_current_mode() && terrain.height_above_terrain(terrain_altitude, true) && !terrain_disabled()) { target_altitude.terrain_following = true; target_altitude.terrain_alt_cm = terrain_altitude*100; } else { // if terrain following is disabled, or we don't know our // terrain altitude when we set the altitude then don't // terrain follow target_altitude.terrain_following = false; } #endif } /* set the target altitude to the current altitude, with ALT_OFFSET adjustment */ void Plane::set_target_altitude_current_adjusted(void) { set_target_altitude_current(); // use adjusted_altitude_cm() to take account of ALTITUDE_OFFSET target_altitude.amsl_cm = adjusted_altitude_cm(); } /* set target altitude based on a location structure */ void Plane::set_target_altitude_location(const Location &loc) { target_altitude.amsl_cm = loc.alt; if (loc.relative_alt) { target_altitude.amsl_cm += home.alt; } #if AP_TERRAIN_AVAILABLE /* if this location has the terrain_alt flag set and we know the terrain altitude of our current location then treat it as a terrain altitude */ float height; if (loc.terrain_alt && terrain.height_above_terrain(height, true)) { target_altitude.terrain_following = true; target_altitude.terrain_alt_cm = loc.alt; if (!loc.relative_alt) { // it has home added, remove it target_altitude.terrain_alt_cm -= home.alt; } } else { target_altitude.terrain_following = false; } #endif } /* return relative to home target altitude in centimeters. Used for altitude control libraries */ int32_t Plane::relative_target_altitude_cm(void) { #if AP_TERRAIN_AVAILABLE float relative_home_height; if (target_altitude.terrain_following && terrain.height_relative_home_equivalent(target_altitude.terrain_alt_cm*0.01f, relative_home_height, true)) { // add lookahead adjustment the target altitude target_altitude.lookahead = lookahead_adjustment(); relative_home_height += target_altitude.lookahead; // correct for rangefinder data relative_home_height += rangefinder_correction(); // we are following terrain, and have terrain data for the // current location. Use it. return relative_home_height*100; } #endif int32_t relative_alt = target_altitude.amsl_cm - home.alt; relative_alt += mission_alt_offset()*100; relative_alt += rangefinder_correction() * 100; return relative_alt; } /* change the current target altitude by an amount in centimeters. Used to cope with changes due to elevator in CRUISE or FBWB */ void Plane::change_target_altitude(int32_t change_cm) { target_altitude.amsl_cm += change_cm; #if AP_TERRAIN_AVAILABLE if (target_altitude.terrain_following && !terrain_disabled()) { target_altitude.terrain_alt_cm += change_cm; } #endif } /* change target altitude by a proportion of the target altitude offset (difference in height to next WP from previous WP). proportion should be between 0 and 1. When proportion is zero we have reached the destination. When proportion is 1 we are at the starting waypoint. Note that target_altitude is setup initially based on the destination waypoint */ void Plane::set_target_altitude_proportion(const Location &loc, float proportion) { set_target_altitude_location(loc); proportion = constrain_float(proportion, 0.0f, 1.0f); change_target_altitude(-target_altitude.offset_cm*proportion); //rebuild the glide slope if we are above it and supposed to be climbing if(g.glide_slope_threshold > 0) { if(target_altitude.offset_cm > 0 && calc_altitude_error_cm() < -100 * g.glide_slope_threshold) { set_target_altitude_location(loc); set_offset_altitude_location(current_loc, loc); change_target_altitude(-target_altitude.offset_cm*proportion); //adjust the new target offset altitude to reflect that we are partially already done if(proportion > 0.0f) target_altitude.offset_cm = ((float)target_altitude.offset_cm)/proportion; } } } /* constrain target altitude to be between two locations. Used to ensure we stay within two waypoints in altitude */ void Plane::constrain_target_altitude_location(const Location &loc1, const Location &loc2) { if (loc1.alt > loc2.alt) { target_altitude.amsl_cm = constrain_int32(target_altitude.amsl_cm, loc2.alt, loc1.alt); } else { target_altitude.amsl_cm = constrain_int32(target_altitude.amsl_cm, loc1.alt, loc2.alt); } } /* return error between target altitude and current altitude */ int32_t Plane::calc_altitude_error_cm(void) { #if AP_TERRAIN_AVAILABLE float terrain_height; if (target_altitude.terrain_following && terrain.height_above_terrain(terrain_height, true)) { return target_altitude.lookahead*100 + target_altitude.terrain_alt_cm - (terrain_height*100); } #endif return target_altitude.amsl_cm - adjusted_altitude_cm(); } /* check for FBWB_min_altitude_cm violation */ void Plane::check_fbwb_minimum_altitude(void) { if (g.FBWB_min_altitude_cm == 0) { return; } #if AP_TERRAIN_AVAILABLE if (target_altitude.terrain_following) { // set our target terrain height to be at least the min set if (target_altitude.terrain_alt_cm < g.FBWB_min_altitude_cm) { target_altitude.terrain_alt_cm = g.FBWB_min_altitude_cm; } return; } #endif if (target_altitude.amsl_cm < home.alt + g.FBWB_min_altitude_cm) { target_altitude.amsl_cm = home.alt + g.FBWB_min_altitude_cm; } } /* reset the altitude offset used for glide slopes */ void Plane::reset_offset_altitude(void) { target_altitude.offset_cm = 0; } /* reset the altitude offset used for glide slopes, based on difference between altitude at a destination and a specified start altitude. If destination is above the starting altitude then the result is positive. */ void Plane::set_offset_altitude_location(const Location &start_loc, const Location &destination_loc) { target_altitude.offset_cm = destination_loc.alt - start_loc.alt; #if AP_TERRAIN_AVAILABLE /* if this location has the terrain_alt flag set and we know the terrain altitude of our current location then treat it as a terrain altitude */ float height; if (destination_loc.terrain_alt && target_altitude.terrain_following && terrain.height_above_terrain(height, true)) { target_altitude.offset_cm = target_altitude.terrain_alt_cm - (height * 100); } #endif if (flight_stage != AP_Vehicle::FixedWing::FLIGHT_LAND) { // if we are within GLIDE_SLOPE_MIN meters of the target altitude // then reset the offset to not use a glide slope. This allows for // more accurate flight of missions where the aircraft may lose or // gain a bit of altitude near waypoint turn points due to local // terrain changes if (g.glide_slope_min <= 0 || labs(target_altitude.offset_cm)*0.01f < g.glide_slope_min) { target_altitude.offset_cm = 0; } } } /* return true if current_loc is above loc. Used for glide slope calculations. "above" is simple if we are not terrain following, as it just means the pressure altitude of one is above the other. When in terrain following mode "above" means the over-the-terrain current altitude is above the over-the-terrain alt of loc. It is quite possible for current_loc to be "above" loc when it is at a lower pressure altitude, if current_loc is in a low part of the terrain */ bool Plane::above_location_current(const Location &loc) { #if AP_TERRAIN_AVAILABLE float terrain_alt; if (loc.terrain_alt && terrain.height_above_terrain(terrain_alt, true)) { float loc_alt = loc.alt*0.01f; if (!loc.relative_alt) { loc_alt -= home.alt*0.01f; } return terrain_alt > loc_alt; } #endif float loc_alt_cm = loc.alt; if (loc.relative_alt) { loc_alt_cm += home.alt; } return current_loc.alt > loc_alt_cm; } /* modify a destination to be setup for terrain following if TERRAIN_FOLLOW is enabled */ void Plane::setup_terrain_target_alt(Location &loc) const { #if AP_TERRAIN_AVAILABLE if (terrain_enabled_in_current_mode()) { loc.change_alt_frame(Location::AltFrame::ABOVE_TERRAIN); } #endif } /* return current_loc.alt adjusted for ALT_OFFSET This is useful during long flights to account for barometer changes from the GCS, or to adjust the flying height of a long mission */ int32_t Plane::adjusted_altitude_cm(void) { return current_loc.alt - (mission_alt_offset()*100); } /* return home-relative altitude adjusted for ALT_OFFSET This is useful during long flights to account for barometer changes from the GCS, or to adjust the flying height of a long mission */ int32_t Plane::adjusted_relative_altitude_cm(void) { return (relative_altitude - mission_alt_offset())*100; } /* return the mission altitude offset. This raises or lowers all mission items. It is primarily set using the ALT_OFFSET parameter, but can also be adjusted by the rangefinder landing code for a NAV_LAND command if we have aborted a steep landing */ float Plane::mission_alt_offset(void) { float ret = g.alt_offset; if (control_mode == &mode_auto && (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND || auto_state.wp_is_land_approach)) { // when landing after an aborted landing due to too high glide // slope we use an offset from the last landing attempt ret += landing.alt_offset; } return ret; } /* return the height in meters above the next_WP_loc altitude */ float Plane::height_above_target(void) { float target_alt = next_WP_loc.alt*0.01; if (!next_WP_loc.relative_alt) { target_alt -= ahrs.get_home().alt*0.01f; } #if AP_TERRAIN_AVAILABLE // also record the terrain altitude if possible float terrain_altitude; if (next_WP_loc.terrain_alt && terrain.height_above_terrain(terrain_altitude, true)) { return terrain_altitude - target_alt; } #endif return (adjusted_altitude_cm()*0.01f - ahrs.get_home().alt*0.01f) - target_alt; } /* work out target altitude adjustment from terrain lookahead */ float Plane::lookahead_adjustment(void) { #if AP_TERRAIN_AVAILABLE int32_t bearing_cd; int16_t distance; // work out distance and bearing to target if (control_mode == &mode_fbwb) { // there is no target waypoint in FBWB, so use yaw as an approximation bearing_cd = ahrs.yaw_sensor; distance = g.terrain_lookahead; } else if (!reached_loiter_target()) { bearing_cd = nav_controller->target_bearing_cd(); distance = constrain_float(auto_state.wp_distance, 0, g.terrain_lookahead); } else { // no lookahead when loitering bearing_cd = 0; distance = 0; } if (distance <= 0) { // no lookahead return 0; } float groundspeed = ahrs.groundspeed(); if (groundspeed < 1) { // we're not moving return 0; } // we need to know the climb ratio. We use 50% of the maximum // climb rate so we are not constantly at 100% throttle and to // give a bit more margin on terrain float climb_ratio = 0.5f * TECS_controller.get_max_climbrate() / groundspeed; if (climb_ratio <= 0) { // lookahead makes no sense for negative climb rates return 0; } // ask the terrain code for the lookahead altitude change float lookahead = terrain.lookahead(bearing_cd*0.01f, distance, climb_ratio); if (target_altitude.offset_cm < 0) { // we are heading down to the waypoint, so we don't need to // climb as much lookahead += target_altitude.offset_cm*0.01f; } // constrain lookahead to a reasonable limit return constrain_float(lookahead, 0, 1000.0f); #else return 0; #endif } /* correct target altitude using rangefinder data. Returns offset in meters to correct target altitude. A positive number means we need to ask the speed/height controller to fly higher */ float Plane::rangefinder_correction(void) { if (millis() - rangefinder_state.last_correction_time_ms > 5000) { // we haven't had any rangefinder data for 5s - don't use it return 0; } // for now we only support the rangefinder for landing bool using_rangefinder = (g.rangefinder_landing && flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND); if (!using_rangefinder) { return 0; } return rangefinder_state.correction; } /* correct rangefinder data for terrain height difference between NAV_LAND point and current location */ void Plane::rangefinder_terrain_correction(float &height) { #if AP_TERRAIN_AVAILABLE if (!g.rangefinder_landing || flight_stage != AP_Vehicle::FixedWing::FLIGHT_LAND || !terrain_enabled_in_current_mode()) { return; } float terrain_amsl1, terrain_amsl2; if (!terrain.height_amsl(current_loc, terrain_amsl1) || !terrain.height_amsl(next_WP_loc, terrain_amsl2)) { return; } float correction = (terrain_amsl1 - terrain_amsl2); height += correction; auto_state.terrain_correction = correction; #endif } /* update the offset between rangefinder height and terrain height */ void Plane::rangefinder_height_update(void) { float distance = rangefinder.distance_orient(ROTATION_PITCH_270); if ((rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::Status::Good) && ahrs.home_is_set()) { if (!rangefinder_state.have_initial_reading) { rangefinder_state.have_initial_reading = true; rangefinder_state.initial_range = distance; } // correct the range for attitude (multiply by DCM.c.z, which // is cos(roll)*cos(pitch)) rangefinder_state.height_estimate = distance * ahrs.get_rotation_body_to_ned().c.z; rangefinder_terrain_correction(rangefinder_state.height_estimate); // we consider ourselves to be fully in range when we have 10 // good samples (0.2s) that are different by 5% of the maximum // range from the initial range we see. The 5% change is to // catch Lidars that are giving a constant range, either due // to misconfiguration or a faulty sensor if (rangefinder_state.in_range_count < 10) { if (!is_equal(distance, rangefinder_state.last_distance) && fabsf(rangefinder_state.initial_range - distance) > 0.05f * rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)*0.01f) { rangefinder_state.in_range_count++; } if (fabsf(rangefinder_state.last_distance - distance) > rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)*0.01*0.2) { // changes by more than 20% of full range will reset counter rangefinder_state.in_range_count = 0; } } else { rangefinder_state.in_range = true; bool flightstage_good_for_rangefinder_landing = false; if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) { flightstage_good_for_rangefinder_landing = true; } #if HAL_QUADPLANE_ENABLED if (control_mode == &mode_qland || control_mode == &mode_qrtl || (control_mode == &mode_auto && quadplane.is_vtol_land(plane.mission.get_current_nav_cmd().id))) { flightstage_good_for_rangefinder_landing = true; } #endif if (!rangefinder_state.in_use && flightstage_good_for_rangefinder_landing && g.rangefinder_landing) { rangefinder_state.in_use = true; gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder engaged at %.2fm", (double)rangefinder_state.height_estimate); } } rangefinder_state.last_distance = distance; } else { rangefinder_state.in_range_count = 0; rangefinder_state.in_range = false; } if (rangefinder_state.in_range) { // base correction is the difference between baro altitude and // rangefinder estimate float correction = adjusted_relative_altitude_cm()*0.01 - rangefinder_state.height_estimate; #if AP_TERRAIN_AVAILABLE // if we are terrain following then correction is based on terrain data float terrain_altitude; if ((target_altitude.terrain_following || terrain_enabled_in_current_mode()) && terrain.height_above_terrain(terrain_altitude, true)) { correction = terrain_altitude - rangefinder_state.height_estimate; } #endif // remember the last correction. Use a low pass filter unless // the old data is more than 5 seconds old uint32_t now = millis(); if (now - rangefinder_state.last_correction_time_ms > 5000) { rangefinder_state.correction = correction; rangefinder_state.initial_correction = correction; if (g.rangefinder_landing) { landing.set_initial_slope(); } rangefinder_state.last_correction_time_ms = now; } else { rangefinder_state.correction = 0.8f*rangefinder_state.correction + 0.2f*correction; rangefinder_state.last_correction_time_ms = now; if (fabsf(rangefinder_state.correction - rangefinder_state.initial_correction) > 30) { // the correction has changed by more than 30m, reset use of Lidar. We may have a bad lidar if (rangefinder_state.in_use) { gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder disengaged at %.2fm", (double)rangefinder_state.height_estimate); } memset(&rangefinder_state, 0, sizeof(rangefinder_state)); } } } } /* determine if Non Auto Terrain Disable is active and allowed in present control mode */ bool Plane::terrain_disabled() { return control_mode->allows_terrain_disable() && non_auto_terrain_disable; } /* Check if terrain following is enabled for the current mode */ #if AP_TERRAIN_AVAILABLE const Plane::TerrainLookupTable Plane::Terrain_lookup[] = { {Mode::Number::FLY_BY_WIRE_B, terrain_bitmask::FLY_BY_WIRE_B}, {Mode::Number::CRUISE, terrain_bitmask::CRUISE}, {Mode::Number::AUTO, terrain_bitmask::AUTO}, {Mode::Number::RTL, terrain_bitmask::RTL}, {Mode::Number::AVOID_ADSB, terrain_bitmask::AVOID_ADSB}, {Mode::Number::GUIDED, terrain_bitmask::GUIDED}, {Mode::Number::LOITER, terrain_bitmask::LOITER}, {Mode::Number::CIRCLE, terrain_bitmask::CIRCLE}, #if HAL_QUADPLANE_ENABLED {Mode::Number::QRTL, terrain_bitmask::QRTL}, {Mode::Number::QLAND, terrain_bitmask::QLAND}, {Mode::Number::QLOITER, terrain_bitmask::QLOITER}, #endif }; bool Plane::terrain_enabled_in_current_mode() const { return terrain_enabled_in_mode(control_mode->mode_number()); } bool Plane::terrain_enabled_in_mode(Mode::Number num) const { // Global enable if ((g.terrain_follow.get() & int32_t(terrain_bitmask::ALL)) != 0) { return true; } // Specific enable for (const struct TerrainLookupTable entry : Terrain_lookup) { if (entry.mode_num == num) { if ((g.terrain_follow.get() & int32_t(entry.bitmask)) != 0) { return true; } break; } } return false; } #endif