#pragma once #include <AP_HAL/AP_HAL.h> #include <AP_Param/AP_Param.h> #include <Filter/Filter.h> #include <Filter/DerivativeFilter.h> // maximum number of sensor instances #define BARO_MAX_INSTANCES 3 // maximum number of drivers. Note that a single driver can provide // multiple sensor instances #define BARO_MAX_DRIVERS 3 // timeouts for health reporting #define BARO_TIMEOUT_MS 500 // timeout in ms since last successful read #define BARO_DATA_CHANGE_TIMEOUT_MS 2000 // timeout in ms since last successful read that involved temperature of pressure changing class AP_Baro_Backend; class AP_Baro { friend class AP_Baro_Backend; friend class AP_Baro_SITL; // for access to sensors[] public: AP_Baro(); /* Do not allow copies */ AP_Baro(const AP_Baro &other) = delete; AP_Baro &operator=(const AP_Baro&) = delete; // get singleton static AP_Baro *get_instance(void) { return _instance; } // barometer types typedef enum { BARO_TYPE_AIR, BARO_TYPE_WATER } baro_type_t; // initialise the barometer object, loading backend drivers void init(void); // update the barometer object, asking backends to push data to // the frontend void update(void); // healthy - returns true if sensor and derived altitude are good bool healthy(void) const { return healthy(_primary); } bool healthy(uint8_t instance) const { return sensors[instance].healthy && sensors[instance].alt_ok && sensors[instance].calibrated; } // check if all baros are healthy - used for SYS_STATUS report bool all_healthy(void) const; // pressure in Pascal. Divide by 100 for millibars or hectopascals float get_pressure(void) const { return get_pressure(_primary); } float get_pressure(uint8_t instance) const { return sensors[instance].pressure; } // temperature in degrees C float get_temperature(void) const { return get_temperature(_primary); } float get_temperature(uint8_t instance) const { return sensors[instance].temperature; } // get pressure correction in Pascal. Divide by 100 for millibars or hectopascals float get_pressure_correction(void) const { return get_pressure_correction(_primary); } float get_pressure_correction(uint8_t instance) const { return sensors[instance].p_correction; } // accumulate a reading on sensors. Some backends without their // own thread or a timer may need this. void accumulate(void); // calibrate the barometer. This must be called on startup if the // altitude/climb_rate/acceleration interfaces are ever used void calibrate(bool save=true); // update the barometer calibration to the current pressure. Can // be used for incremental preflight update of baro void update_calibration(void); // get current altitude in meters relative to altitude at the time // of the last calibrate() call float get_altitude(void) const { return get_altitude(_primary); } float get_altitude(uint8_t instance) const { return sensors[instance].altitude; } // get altitude difference in meters relative given a base // pressure in Pascal float get_altitude_difference(float base_pressure, float pressure) const; // get scale factor required to convert equivalent to true airspeed float get_EAS2TAS(void); // get air density / sea level density - decreases as altitude climbs float get_air_density_ratio(void); // get current climb rate in meters/s. A positive number means // going up float get_climb_rate(void); // ground temperature in degrees C // the ground values are only valid after calibration float get_ground_temperature(void) const; // ground pressure in Pascal // the ground values are only valid after calibration float get_ground_pressure(void) const { return get_ground_pressure(_primary); } float get_ground_pressure(uint8_t i) const { return sensors[i].ground_pressure.get(); } // set the temperature to be used for altitude calibration. This // allows an external temperature source (such as a digital // airspeed sensor) to be used as the temperature source void set_external_temperature(float temperature); // get last time sample was taken (in ms) uint32_t get_last_update(void) const { return get_last_update(_primary); } uint32_t get_last_update(uint8_t instance) const { return sensors[instance].last_update_ms; } // settable parameters static const struct AP_Param::GroupInfo var_info[]; float get_external_temperature(void) const { return get_external_temperature(_primary); }; float get_external_temperature(const uint8_t instance) const; // HIL (and SITL) interface, setting altitude void setHIL(float altitude_msl); // HIL (and SITL) interface, setting pressure, temperature, altitude and climb_rate // used by Replay void setHIL(uint8_t instance, float pressure, float temperature, float altitude, float climb_rate, uint32_t last_update_ms); // Set the primary baro void set_primary_baro(uint8_t primary) { _primary_baro.set_and_save(primary); }; // Set the type (Air or Water) of a particular instance void set_type(uint8_t instance, baro_type_t type) { sensors[instance].type = type; }; // Get the type (Air or Water) of a particular instance baro_type_t get_type(uint8_t instance) { return sensors[instance].type; }; // HIL variables struct { float pressure; float temperature; float altitude; float climb_rate; uint32_t last_update_ms; bool updated:1; bool have_alt:1; bool have_last_update:1; } _hil; // register a new sensor, claiming a sensor slot. If we are out of // slots it will panic uint8_t register_sensor(void); // return number of registered sensors uint8_t num_instances(void) const { return _num_sensors; } // enable HIL mode void set_hil_mode(void) { _hil_mode = true; } // set baro drift amount void set_baro_drift_altitude(float alt) { _alt_offset = alt; } // get baro drift amount float get_baro_drift_offset(void) { return _alt_offset_active; } // simple atmospheric model static void SimpleAtmosphere(const float alt, float &sigma, float &delta, float &theta); // simple underwater atmospheric model static void SimpleUnderWaterAtmosphere(float alt, float &rho, float &delta, float &theta); // set a pressure correction from AP_TempCalibration void set_pressure_correction(uint8_t instance, float p_correction); uint8_t get_filter_range() const { return _filter_range; } // indicate which bit in LOG_BITMASK indicates baro logging enabled void set_log_baro_bit(uint32_t bit) { _log_baro_bit = bit; } bool should_df_log() const; private: // singleton static AP_Baro *_instance; // how many drivers do we have? uint8_t _num_drivers; AP_Baro_Backend *drivers[BARO_MAX_DRIVERS]; // how many sensors do we have? uint8_t _num_sensors; // what is the primary sensor at the moment? uint8_t _primary; uint32_t _log_baro_bit = -1; struct sensor { baro_type_t type; // 0 for air pressure (default), 1 for water pressure uint32_t last_update_ms; // last update time in ms uint32_t last_change_ms; // last update time in ms that included a change in reading from previous readings bool healthy:1; // true if sensor is healthy bool alt_ok:1; // true if calculated altitude is ok bool calibrated:1; // true if calculated calibrated successfully float pressure; // pressure in Pascal float temperature; // temperature in degrees C float altitude; // calculated altitude AP_Float ground_pressure; float p_correction; } sensors[BARO_MAX_INSTANCES]; AP_Float _alt_offset; float _alt_offset_active; AP_Int8 _primary_baro; // primary chosen by user AP_Int8 _ext_bus; // bus number for external barometer float _last_altitude_EAS2TAS; float _EAS2TAS; float _external_temperature; uint32_t _last_external_temperature_ms; DerivativeFilterFloat_Size7 _climb_rate_filter; AP_Float _specific_gravity; // the specific gravity of fluid for an ROV 1.00 for freshwater, 1.024 for salt water AP_Float _user_ground_temperature; // user override of the ground temperature used for EAS2TAS bool _hil_mode:1; float _guessed_ground_temperature; // currently ground temperature estimate using our best abailable source // when did we last notify the GCS of new pressure reference? uint32_t _last_notify_ms; bool _add_backend(AP_Baro_Backend *backend); AP_Int8 _filter_range; // valid value range from mean value }; namespace AP { AP_Baro &baro(); };