/*
   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#pragma once
/*
  This is the main Blimp class
 */

////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////

#include <cmath>
#include <stdio.h>
#include <stdarg.h>

#include <AP_HAL/AP_HAL.h>

// Common dependencies
#include <AP_Common/AP_Common.h>
#include <AP_Common/Location.h>
#include <AP_Param/AP_Param.h>
#include <StorageManager/StorageManager.h>

// Application dependencies
#include <AP_Logger/AP_Logger.h>          // ArduPilot Mega Flash Memory Library
#include <AP_Math/AP_Math.h>            // ArduPilot Mega Vector/Matrix math Library
// #include <AP_AccelCal/AP_AccelCal.h>                // interface and maths for accelerometer calibration
// #include <AP_InertialSensor/AP_InertialSensor.h>  // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Stats/AP_Stats.h>     // statistics library
#include <Filter/Filter.h>             // Filter library
#include <AP_Vehicle/AP_Vehicle.h>         // needed for AHRS build
#include <AP_InertialNav/AP_InertialNav.h>     // inertial navigation library
#include <AP_RCMapper/AP_RCMapper.h>        // RC input mapping library
#include <AP_BattMonitor/AP_BattMonitor.h>     // Battery monitor library
#include <AP_Arming/AP_Arming.h>
#include <AP_Scripting/AP_Scripting.h>
#include <AC_PID/AC_PID_2D.h>
#include <AC_PID/AC_PID_Basic.h>
#include <AC_PID/AC_PID.h>
#include <AP_Vehicle/AP_MultiCopter.h>

#include <Filter/NotchFilter.h>

// Configuration
#include "defines.h"
#include "config.h"

#include "Fins.h"

#include "RC_Channel.h"         // RC Channel Library

#include "GCS_Mavlink.h"
#include "GCS_Blimp.h"
#include "AP_Arming.h"

#include <AP_Mount/AP_Mount.h>

// Local modules

#include "Parameters.h"

#include "mode.h"

class Blimp : public AP_Vehicle
{
public:
    friend class GCS_MAVLINK_Blimp;
    friend class GCS_Blimp;
    friend class Parameters;
    friend class ParametersG2;

    friend class AP_Arming_Blimp;
    friend class RC_Channel_Blimp;
    friend class RC_Channels_Blimp;

    friend class Mode;
    friend class ModeManual;
    friend class ModeLand;
    friend class ModeVelocity;
    friend class ModeLoiter;

    friend class Fins;

    Blimp(void);

private:

    // key aircraft parameters passed to multiple libraries
    AP_MultiCopter aparm;

    // Global parameters are all contained within the 'g' class.
    Parameters g;
    ParametersG2 g2;

    // primary input control channels
    RC_Channel *channel_right;
    RC_Channel *channel_front;
    RC_Channel *channel_down;
    RC_Channel *channel_yaw;

    AP_Logger logger;

    // flight modes convenience array
    AP_Int8 *flight_modes;
    const uint8_t num_flight_modes = 6;

    // Arming/Disarming management class
    AP_Arming_Blimp arming;

    // system time in milliseconds of last recorded yaw reset from ekf
    uint32_t ekfYawReset_ms;
    int8_t ekf_primary_core;

    // vibration check
    struct {
        bool high_vibes;    // true while high vibration are detected
        uint32_t start_ms;  // system time high vibration were last detected
        uint32_t clear_ms;  // system time high vibrations stopped
    } vibration_check;

    // GCS selection
    GCS_Blimp _gcs; // avoid using this; use gcs()
    GCS_Blimp &gcs()
    {
        return _gcs;
    }

    // Documentation of Globals:
    typedef union {
        struct {
            uint8_t pre_arm_rc_check        : 1; // 1       // true if rc input pre-arm checks have been completed successfully
            uint8_t pre_arm_check           : 1; // 2       // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
            uint8_t auto_armed              : 1; // 3       // stops auto missions from beginning until throttle is raised
            uint8_t logging_started         : 1; // 4       // true if logging has started
            uint8_t land_complete           : 1; // 5       // true if we have detected a landing
            uint8_t new_radio_frame         : 1; // 6       // Set true if we have new PWM data to act on from the Radio
            uint8_t rc_receiver_present     : 1; // 7       // true if we have an rc receiver present (i.e. if we've ever received an update
            uint8_t compass_mot             : 1; // 8       // true if we are currently performing compassmot calibration
            uint8_t motor_test              : 1; // 9       // true if we are currently performing the motors test
            uint8_t initialised             : 1; // 10      // true once the init_ardupilot function has completed.  Extended status to GCS is not sent until this completes
            uint8_t land_complete_maybe     : 1; // 11      // true if we may have landed (less strict version of land_complete)
            uint8_t throttle_zero           : 1; // 12      // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down
            uint8_t gps_glitching           : 1; // 13      // true if GPS glitching is affecting navigation accuracy
            uint8_t in_arming_delay         : 1; // 14      // true while we are armed but waiting to spin motors
            uint8_t initialised_params      : 1; // 15      // true when the all parameters have been initialised. we cannot send parameters to the GCS until this is done
        };
        uint32_t value;
    } ap_t;

    ap_t ap;

    static_assert(sizeof(uint32_t) == sizeof(ap), "ap_t must be uint32_t");

    // This is the state of the flight control system
    // There are multiple states defined such as STABILIZE, ACRO,
    Mode::Number control_mode;
    ModeReason control_mode_reason = ModeReason::UNKNOWN;
    Mode::Number prev_control_mode;

    RCMapper rcmap;

    // intertial nav alt when we armed
    float arming_altitude_m;

    // Failsafe
    struct {
        int8_t radio_counter;            // number of iterations with throttle below throttle_fs_value

        uint8_t radio               : 1; // A status flag for the radio failsafe
        uint8_t gcs                 : 1; // A status flag for the ground station failsafe
        uint8_t ekf                 : 1; // true if ekf failsafe has occurred
    } failsafe;

    bool any_failsafe_triggered() const
    {
        return failsafe.radio || battery.has_failsafed() || failsafe.gcs || failsafe.ekf;
    }

    // Motor Output
    Fins *motors;

    int32_t _home_bearing;
    uint32_t _home_distance;

    // Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable
    int32_t initial_armed_bearing;

    // Battery Sensors
    AP_BattMonitor battery{MASK_LOG_CURRENT,
                       FUNCTOR_BIND_MEMBER(&Blimp::handle_battery_failsafe, void, const char*, const int8_t),
                       _failsafe_priorities};

    // Altitude
    int32_t baro_alt;            // barometer altitude in cm above home

    // filtered pilot's throttle input used to cancel landing if throttle held high
    LowPassFilterFloat rc_throttle_control_in_filter;

    // 3D Location vectors
    // Current location of the vehicle (altitude is relative to home)
    Location current_loc;
    Vector3f vel_ned;
    Vector3f vel_ned_filtd;

    Vector3f pos_ned;
    float vel_yaw;
    float vel_yaw_filtd;
    NotchFilterVector2f vel_xy_filter;
    NotchFilterFloat vel_z_filter;
    NotchFilterFloat vel_yaw_filter;

    // Inertial Navigation
    AP_InertialNav inertial_nav;

    // Vel & pos PIDs
    AC_PID_2D pid_vel_xy{3, 0.2, 0, 0, 0.2, 3, 3}; //These are the defaults - P I D FF IMAX FiltHz FiltDHz DT
    AC_PID_Basic pid_vel_z{7, 1.5, 0, 0, 1, 3, 3};
    AC_PID_Basic pid_vel_yaw{3, 0.4, 0, 0, 0.2, 3, 3};

    AC_PID_2D pid_pos_xy{1, 0.05, 0, 0, 0.1, 3, 3};
    AC_PID_Basic pid_pos_z{0.7, 0, 0, 0, 0, 3, 3};
    AC_PID pid_pos_yaw{1.2, 0.5, 0, 0, 2, 3, 3, 3}; //p, i, d, ff, imax, filt_t, filt_e, filt_d, dt, opt srmax, opt srtau

    // System Timers
    // --------------
    // arm_time_ms - Records when vehicle was armed. Will be Zero if we are disarmed.
    uint32_t arm_time_ms;

    // Used to exit the roll and pitch auto trim function
    uint8_t auto_trim_counter;
    bool auto_trim_started = false;

    // last valid RC input time
    uint32_t last_radio_update_ms;

    // Top-level logic
    // setup the var_info table
    AP_Param param_loader;

    bool standby_active;

    static const AP_Scheduler::Task scheduler_tasks[];
    static const AP_Param::Info var_info[];
    static const struct LogStructure log_structure[];

    enum Failsafe_Action {
        Failsafe_Action_None           = 0,
        Failsafe_Action_Land           = 1,
        Failsafe_Action_Terminate      = 5
    };

    enum class FailsafeOption {
        RC_CONTINUE_IF_AUTO             = (1<<0),   // 1
        GCS_CONTINUE_IF_AUTO            = (1<<1),   // 2
        RC_CONTINUE_IF_GUIDED           = (1<<2),   // 4
        CONTINUE_IF_LANDING             = (1<<3),   // 8
        GCS_CONTINUE_IF_PILOT_CONTROL   = (1<<4),   // 16
        RELEASE_GRIPPER                 = (1<<5),   // 32
    };

    static constexpr int8_t _failsafe_priorities[] = {
        Failsafe_Action_Terminate,
        Failsafe_Action_Land,
        Failsafe_Action_None,
        -1 // the priority list must end with a sentinel of -1
    };

#define FAILSAFE_LAND_PRIORITY 1
    static_assert(_failsafe_priorities[FAILSAFE_LAND_PRIORITY] == Failsafe_Action_Land,
                  "FAILSAFE_LAND_PRIORITY must match the entry in _failsafe_priorities");
    static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1,
                  "_failsafe_priorities is missing the sentinel");

    // AP_State.cpp
    void set_auto_armed(bool b);
    void set_failsafe_radio(bool b);
    void set_failsafe_gcs(bool b);

    // Blimp.cpp
    void get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
                             uint8_t &task_count,
                             uint32_t &log_bit) override;
    void rc_loop();
    void throttle_loop();
    void update_batt_compass(void);
    void full_rate_logging();
    void ten_hz_logging_loop();
    void twentyfive_hz_logging();
    void three_hz_loop();
    void one_hz_loop();
    void read_AHRS(void);
    void update_altitude();
    void rotate_NE_to_BF(Vector2f &vec);
    void rotate_BF_to_NE(Vector2f &vec);

    // commands.cpp
    void update_home_from_EKF();
    void set_home_to_current_location_inflight();
    bool set_home_to_current_location(bool lock) WARN_IF_UNUSED;
    bool set_home(const Location& loc, bool lock) WARN_IF_UNUSED;
    bool far_from_EKF_origin(const Location& loc);

    // ekf_check.cpp
    void ekf_check();
    bool ekf_over_threshold();
    void failsafe_ekf_event();
    void failsafe_ekf_off_event(void);
    void check_ekf_reset();
    void check_vibration();

    // events.cpp
    bool failsafe_option(FailsafeOption opt) const;
    void failsafe_radio_on_event();
    void failsafe_radio_off_event();
    void handle_battery_failsafe(const char* type_str, const int8_t action);
    void failsafe_gcs_check();
    bool should_disarm_on_failsafe();
    void do_failsafe_action(Failsafe_Action action, ModeReason reason);
    void gpsglitch_check();

    // failsafe.cpp
    void failsafe_enable();
    void failsafe_disable();

    // fence.cpp
    void fence_check();

    // inertia.cpp
    void read_inertia();

    // landing_detector.cpp
    void update_land_and_crash_detectors();
    void update_land_detector();

    // landing_gear.cpp
    void landinggear_update();

    // Log.cpp
    void Log_Write_Performance();
    void Log_Write_Attitude();
    void Log_Write_PIDs();
    void Log_Write_EKF_POS();
    void Log_Write_Data(LogDataID id, int32_t value);
    void Log_Write_Data(LogDataID id, uint32_t value);
    void Log_Write_Data(LogDataID id, int16_t value);
    void Log_Write_Data(LogDataID id, uint16_t value);
    void Log_Write_Data(LogDataID id, float value);
    void Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, float tune_min, float tune_max);
    void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target);
    void Log_Write_SysID_Setup(uint8_t systemID_axis, float waveform_magnitude, float frequency_start, float frequency_stop, float time_fade_in, float time_const_freq, float time_record, float time_fade_out);
    void Log_Write_SysID_Data(float waveform_time, float waveform_sample, float waveform_freq, float angle_x, float angle_y, float angle_z, float accel_x, float accel_y, float accel_z);
    void Log_Write_Vehicle_Startup_Messages();
    void log_init(void);
    void Write_FINI(float right, float front, float down, float yaw);
    void Write_FINO(float *amp, float *off);

    // mode.cpp
    bool set_mode(Mode::Number mode, ModeReason reason);
    bool set_mode(const uint8_t new_mode, const ModeReason reason) override;
    uint8_t get_mode() const override
    {
        return (uint8_t)control_mode;
    }
    void update_flight_mode();
    void notify_flight_mode();

    // mode_land.cpp
    void set_mode_land_with_pause(ModeReason reason);
    bool landing_with_GPS();

    // // motors.cpp
    void arm_motors_check();
    void motors_output();

    // Parameters.cpp
    void load_parameters(void) override;
    void convert_pid_parameters(void);
    void convert_lgr_parameters(void);
    void convert_fs_options_params(void);

    // radio.cpp
    void default_dead_zones();
    void init_rc_in();
    void init_rc_out();
    void enable_motor_output();
    void read_radio();
    void set_throttle_and_failsafe(uint16_t throttle_pwm);
    void set_throttle_zero_flag(int16_t throttle_control);

    // sensors.cpp
    void read_barometer(void);
    void init_rangefinder(void);
    void read_rangefinder(void);
    bool rangefinder_alt_ok();
    bool rangefinder_up_ok();

    // RC_Channel.cpp
    void save_trim();
    void auto_trim();
    void auto_trim_cancel();

    // system.cpp
    void init_ardupilot() override;
    void startup_INS_ground();
    bool position_ok() const;
    bool ekf_has_absolute_position() const;
    bool ekf_has_relative_position() const;
    bool ekf_alt_ok() const;
    void update_auto_armed();
    bool should_log(uint32_t mask);
    MAV_TYPE get_frame_mav_type();
    const char* get_frame_string();
    void allocate_motors(void);

    Mode *flightmode;
    ModeManual mode_manual;
    ModeLand mode_land;
    ModeVelocity mode_velocity;
    ModeLoiter mode_loiter;

    // mode.cpp
    Mode *mode_from_mode_num(const Mode::Number mode);
    void exit_mode(Mode *&old_flightmode, Mode *&new_flightmode);

public:
    void failsafe_check();      // failsafe.cpp
};

extern Blimp blimp;

using AP_HAL::millis;
using AP_HAL::micros;