/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS && !defined(HAL_NO_UARTDRIVER) #include "UARTDriver.h" #include "GPIO.h" #include #include "shared_dma.h" #include #include "Scheduler.h" #include "hwdef/common/stm32_util.h" extern const AP_HAL::HAL& hal; using namespace ChibiOS; #ifdef HAL_USB_VENDOR_ID // USB has been configured in hwdef.dat #define HAVE_USB_SERIAL #endif #if HAL_WITH_IO_MCU extern ChibiOS::UARTDriver uart_io; #endif const UARTDriver::SerialDef UARTDriver::_serial_tab[] = { HAL_UART_DEVICE_LIST }; // handle for UART handling thread thread_t *UARTDriver::uart_thread_ctx; // table to find UARTDrivers from serial number, used for event handling UARTDriver *UARTDriver::uart_drivers[UART_MAX_DRIVERS]; // event used to wake up waiting thread. This event number is for // caller threads #define EVT_DATA EVENT_MASK(10) // event for parity error #define EVT_PARITY EVENT_MASK(11) // event for transmit end for half-duplex #define EVT_TRANSMIT_END EVENT_MASK(12) #ifndef HAL_UART_MIN_TX_SIZE #define HAL_UART_MIN_TX_SIZE 1024 #endif #ifndef HAL_UART_MIN_RX_SIZE #define HAL_UART_MIN_RX_SIZE 512 #endif #ifndef HAL_UART_STACK_SIZE #define HAL_UART_STACK_SIZE 2048 #endif UARTDriver::UARTDriver(uint8_t _serial_num) : serial_num(_serial_num), sdef(_serial_tab[_serial_num]), _baudrate(57600) { osalDbgAssert(serial_num < UART_MAX_DRIVERS, "too many UART drivers"); uart_drivers[serial_num] = this; } /* thread for handling UART send/receive We use events indexed by serial_num to trigger a more rapid send for unbuffered_write uarts, and run at 1kHz for general UART handling */ void UARTDriver::uart_thread(void* arg) { uint32_t last_thread_run_us = 0; // last time we did a 1kHz run of uarts uart_thread_ctx = chThdGetSelfX(); while (true) { eventmask_t mask = chEvtWaitAnyTimeout(~0, chTimeMS2I(1)); uint32_t now = AP_HAL::micros(); if (now - last_thread_run_us >= 1000) { // run them all if it's been more than 1ms since we ran // them all mask = ~0; last_thread_run_us = now; } for (uint8_t i=0; i_initialised && (mask & EVENT_MASK(i) || (uart_drivers[i]->hd_tx_active && (mask & EVT_TRANSMIT_END)))) { uart_drivers[i]->_timer_tick(); } } } } /* initialise UART thread */ void UARTDriver::thread_init(void) { if (uart_thread_ctx) { // already initialised return; } #if CH_CFG_USE_HEAP == TRUE uart_thread_ctx = thread_create_alloc(THD_WORKING_AREA_SIZE(HAL_UART_STACK_SIZE), "apm_uart", APM_UART_PRIORITY, uart_thread, this); #endif } #ifndef HAL_STDOUT_SERIAL /* hook to allow printf() to work on hal.console when we don't have a dedicated debug console */ static int hal_console_vprintf(const char *fmt, va_list arg) { hal.console->vprintf(fmt, arg); return 1; // wrong length, but doesn't matter for what this is used for } #endif void UARTDriver::begin(uint32_t b, uint16_t rxS, uint16_t txS) { thread_init(); if (sdef.serial == nullptr) { return; } uint16_t min_tx_buffer = HAL_UART_MIN_TX_SIZE; uint16_t min_rx_buffer = HAL_UART_MIN_RX_SIZE; /* increase min RX size to ensure we can receive a fully utilised UART if we are running our receive loop at 40Hz. This means 25ms of data. Assumes 10 bits per byte, which is normal for most protocols */ bool rx_size_by_baudrate = true; #if HAL_WITH_IO_MCU if (this == &uart_io) { // iomcu doesn't need extra space, just speed rx_size_by_baudrate = false; min_tx_buffer = 0; min_rx_buffer = 0; } #endif if (rx_size_by_baudrate) { min_rx_buffer = MAX(min_rx_buffer, b/(40*10)); } if (sdef.is_usb) { // give more buffer space for log download on USB min_tx_buffer *= 4; } // on PX4 we have enough memory to have a larger transmit and // receive buffer for all ports. This means we don't get delays // while waiting to write GPS config packets if (txS < min_tx_buffer) { txS = min_tx_buffer; } if (rxS < min_rx_buffer) { rxS = min_rx_buffer; } /* allocate the read buffer we allocate buffers before we successfully open the device as we want to allocate in the early stages of boot, and cause minimum thrashing of the heap once we are up. The ttyACM0 driver may not connect for some time after boot */ while (_in_timer) { hal.scheduler->delay(1); } if (rxS != _readbuf.get_size()) { _initialised = false; _readbuf.set_size(rxS); } bool clear_buffers = false; if (b != 0) { // clear buffers on baudrate change, but not on the console (which is usually USB) if (_baudrate != b && hal.console != this) { clear_buffers = true; } _baudrate = b; } if (clear_buffers) { _readbuf.clear(); } #ifndef HAL_UART_NODMA if (!half_duplex && !(_last_options & OPTION_NODMA_RX)) { if (rx_bounce_buf[0] == nullptr && sdef.dma_rx) { rx_bounce_buf[0] = (uint8_t *)hal.util->malloc_type(RX_BOUNCE_BUFSIZE, AP_HAL::Util::MEM_DMA_SAFE); } if (rx_bounce_buf[1] == nullptr && sdef.dma_rx) { rx_bounce_buf[1] = (uint8_t *)hal.util->malloc_type(RX_BOUNCE_BUFSIZE, AP_HAL::Util::MEM_DMA_SAFE); } } if (tx_bounce_buf == nullptr && sdef.dma_tx && !(_last_options & OPTION_NODMA_TX)) { tx_bounce_buf = (uint8_t *)hal.util->malloc_type(TX_BOUNCE_BUFSIZE, AP_HAL::Util::MEM_DMA_SAFE); chVTObjectInit(&tx_timeout); tx_bounce_buf_ready = true; } if (half_duplex) { rx_dma_enabled = tx_dma_enabled = false; } else { rx_dma_enabled = rx_bounce_buf[0] != nullptr && rx_bounce_buf[1] != nullptr; tx_dma_enabled = tx_bounce_buf != nullptr; } #endif /* allocate the write buffer */ while (_in_timer) { hal.scheduler->delay(1); } if (txS != _writebuf.get_size()) { _initialised = false; _writebuf.set_size(txS); } if (clear_buffers) { _writebuf.clear(); } if (sdef.is_usb) { #ifdef HAVE_USB_SERIAL /* * Initializes a serial-over-USB CDC driver. */ if (!_device_initialised) { if ((SerialUSBDriver*)sdef.serial == &SDU1) { usb_initialise(); } _device_initialised = true; } #endif } else { #if HAL_USE_SERIAL == TRUE if (_baudrate != 0) { #ifndef HAL_UART_NODMA bool was_initialised = _device_initialised; // setup Rx DMA if (!_device_initialised) { if (rx_dma_enabled) { osalDbgAssert(rxdma == nullptr, "double DMA allocation"); chSysLock(); rxdma = dmaStreamAllocI(sdef.dma_rx_stream_id, 12, //IRQ Priority (stm32_dmaisr_t)rxbuff_full_irq, (void *)this); osalDbgAssert(rxdma, "stream alloc failed"); chSysUnlock(); #if defined(STM32F7) || defined(STM32H7) || defined(STM32F3) dmaStreamSetPeripheral(rxdma, &((SerialDriver*)sdef.serial)->usart->RDR); #else dmaStreamSetPeripheral(rxdma, &((SerialDriver*)sdef.serial)->usart->DR); #endif // STM32F7 #if STM32_DMA_SUPPORTS_DMAMUX dmaSetRequestSource(rxdma, sdef.dma_rx_channel_id); #endif } if (tx_dma_enabled) { // we only allow for sharing of the TX DMA channel, not the RX // DMA channel, as the RX side is active all the time, so // cannot be shared dma_handle = new Shared_DMA(sdef.dma_tx_stream_id, SHARED_DMA_NONE, FUNCTOR_BIND_MEMBER(&UARTDriver::dma_tx_allocate, void, Shared_DMA *), FUNCTOR_BIND_MEMBER(&UARTDriver::dma_tx_deallocate, void, Shared_DMA *)); } _device_initialised = true; } #endif // HAL_UART_NODMA sercfg.speed = _baudrate; // start with options from set_options() sercfg.cr1 = _cr1_options; sercfg.cr2 = _cr2_options; sercfg.cr3 = _cr3_options; #ifndef HAL_UART_NODMA if (rx_dma_enabled) { sercfg.cr1 |= USART_CR1_IDLEIE; sercfg.cr3 |= USART_CR3_DMAR; } if (tx_dma_enabled) { sercfg.cr3 |= USART_CR3_DMAT; } sercfg.irq_cb = rx_irq_cb; #endif // HAL_UART_NODMA sercfg.cr2 |= USART_CR2_STOP1_BITS; sercfg.ctx = (void*)this; sdStart((SerialDriver*)sdef.serial, &sercfg); #ifndef HAL_UART_NODMA if (rx_dma_enabled) { //Configure serial driver to skip handling RX packets //because we will handle them via DMA ((SerialDriver*)sdef.serial)->usart->CR1 &= ~USART_CR1_RXNEIE; // Start DMA if (!was_initialised) { dmaStreamDisable(rxdma); dma_rx_enable(); } } #endif // HAL_UART_NODMA } #endif // HAL_USE_SERIAL } if (_writebuf.get_size() && _readbuf.get_size()) { _initialised = true; } _uart_owner_thd = chThdGetSelfX(); // setup flow control set_flow_control(_flow_control); if (serial_num == 0 && _initialised) { #ifndef HAL_STDOUT_SERIAL // setup hal.console to take printf() output vprintf_console_hook = hal_console_vprintf; #endif } } #ifndef HAL_UART_NODMA void UARTDriver::dma_tx_allocate(Shared_DMA *ctx) { #if HAL_USE_SERIAL == TRUE if (txdma != nullptr) { return; } chSysLock(); txdma = dmaStreamAllocI(sdef.dma_tx_stream_id, 12, //IRQ Priority (stm32_dmaisr_t)tx_complete, (void *)this); osalDbgAssert(txdma, "stream alloc failed"); chSysUnlock(); #if defined(STM32F7) || defined(STM32H7) || defined(STM32F3) dmaStreamSetPeripheral(txdma, &((SerialDriver*)sdef.serial)->usart->TDR); #else dmaStreamSetPeripheral(txdma, &((SerialDriver*)sdef.serial)->usart->DR); #endif // STM32F7 #if STM32_DMA_SUPPORTS_DMAMUX dmaSetRequestSource(txdma, sdef.dma_tx_channel_id); #endif #endif // HAL_USE_SERIAL } #ifndef HAL_UART_NODMA void UARTDriver::dma_rx_enable(void) { uint32_t dmamode = STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; dmamode |= STM32_DMA_CR_CHSEL(sdef.dma_rx_channel_id); dmamode |= STM32_DMA_CR_PL(0); rx_bounce_idx ^= 1; dmaStreamSetMemory0(rxdma, rx_bounce_buf[rx_bounce_idx]); dmaStreamSetTransactionSize(rxdma, RX_BOUNCE_BUFSIZE); dmaStreamSetMode(rxdma, dmamode | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE); dmaStreamEnable(rxdma); } #endif void UARTDriver::dma_tx_deallocate(Shared_DMA *ctx) { chSysLock(); dmaStreamFreeI(txdma); txdma = nullptr; chSysUnlock(); } /* DMA transmit completion interrupt handler */ void UARTDriver::tx_complete(void* self, uint32_t flags) { UARTDriver* uart_drv = (UARTDriver*)self; chSysLockFromISR(); if (!uart_drv->tx_bounce_buf_ready) { // reset timeout chVTResetI(&uart_drv->tx_timeout); uart_drv->_last_write_completed_us = AP_HAL::micros(); uart_drv->tx_bounce_buf_ready = true; if (uart_drv->unbuffered_writes && uart_drv->_writebuf.available()) { // trigger a rapid send of next bytes chEvtSignalI(uart_thread_ctx, EVENT_MASK(uart_drv->serial_num)); } uart_drv->dma_handle->unlock_from_IRQ(); } chSysUnlockFromISR(); } #ifndef HAL_UART_NODMA void UARTDriver::rx_irq_cb(void* self) { #if HAL_USE_SERIAL == TRUE UARTDriver* uart_drv = (UARTDriver*)self; if (!uart_drv->rx_dma_enabled) { return; } #if defined(STM32F7) || defined(STM32H7) //disable dma, triggering DMA transfer complete interrupt uart_drv->rxdma->stream->CR &= ~STM32_DMA_CR_EN; #elif defined(STM32F3) //disable dma, triggering DMA transfer complete interrupt dmaStreamDisable(uart_drv->rxdma); uart_drv->rxdma->channel->CCR &= ~STM32_DMA_CR_EN; #else volatile uint16_t sr = ((SerialDriver*)(uart_drv->sdef.serial))->usart->SR; if(sr & USART_SR_IDLE) { volatile uint16_t dr = ((SerialDriver*)(uart_drv->sdef.serial))->usart->DR; (void)dr; //disable dma, triggering DMA transfer complete interrupt uart_drv->rxdma->stream->CR &= ~STM32_DMA_CR_EN; } #endif // STM32F7 #endif // HAL_USE_SERIAL } #endif /* handle a RX DMA full interrupt */ void UARTDriver::rxbuff_full_irq(void* self, uint32_t flags) { #if HAL_USE_SERIAL == TRUE UARTDriver* uart_drv = (UARTDriver*)self; if (!uart_drv->rx_dma_enabled) { return; } uint16_t len = RX_BOUNCE_BUFSIZE - dmaStreamGetTransactionSize(uart_drv->rxdma); const uint8_t bounce_idx = uart_drv->rx_bounce_idx; // restart the DMA transfers immediately. This switches to the // other bounce buffer. We restart the DMA before we copy the data // out to minimise the time with DMA disabled, which allows us to // handle much higher receiver baudrates dmaStreamDisable(uart_drv->rxdma); uart_drv->dma_rx_enable(); if (len > 0) { /* we have data to copy out */ stm32_cacheBufferInvalidate(uart_drv->rx_bounce_buf[bounce_idx], len); uart_drv->_readbuf.write(uart_drv->rx_bounce_buf[bounce_idx], len); uart_drv->receive_timestamp_update(); } if (uart_drv->_wait.thread_ctx && uart_drv->_readbuf.available() >= uart_drv->_wait.n) { chSysLockFromISR(); chEvtSignalI(uart_drv->_wait.thread_ctx, EVT_DATA); chSysUnlockFromISR(); } if (uart_drv->_rts_is_active) { uart_drv->update_rts_line(); } #endif // HAL_USE_SERIAL } #endif // HAL_UART_NODMA void UARTDriver::begin(uint32_t b) { begin(b, 0, 0); } void UARTDriver::end() { _initialised = false; while (_in_timer) hal.scheduler->delay(1); if (sdef.is_usb) { #ifdef HAVE_USB_SERIAL sduStop((SerialUSBDriver*)sdef.serial); #endif } else { #if HAL_USE_SERIAL == TRUE sdStop((SerialDriver*)sdef.serial); #endif } _readbuf.set_size(0); _writebuf.set_size(0); } void UARTDriver::flush() { if (sdef.is_usb) { #ifdef HAVE_USB_SERIAL sduSOFHookI((SerialUSBDriver*)sdef.serial); #endif } else { //TODO: Handle this for other serial ports } } bool UARTDriver::is_initialized() { return _initialised; } void UARTDriver::set_blocking_writes(bool blocking) { _blocking_writes = blocking; } bool UARTDriver::tx_pending() { return false; } /* Empty implementations of Stream virtual methods */ uint32_t UARTDriver::available() { if (!_initialised || lock_read_key) { return 0; } if (sdef.is_usb) { #ifdef HAVE_USB_SERIAL if (((SerialUSBDriver*)sdef.serial)->config->usbp->state != USB_ACTIVE) { return 0; } #endif } return _readbuf.available(); } uint32_t UARTDriver::txspace() { if (!_initialised) { return 0; } return _writebuf.space(); } int16_t UARTDriver::read() { if (lock_read_key != 0 || _uart_owner_thd != chThdGetSelfX()){ return -1; } if (!_initialised) { return -1; } uint8_t byte; if (!_readbuf.read_byte(&byte)) { return -1; } if (!_rts_is_active) { update_rts_line(); } return byte; } int16_t UARTDriver::read_locked(uint32_t key) { if (lock_read_key != 0 && key != lock_read_key) { return -1; } if (!_initialised) { return -1; } uint8_t byte; if (!_readbuf.read_byte(&byte)) { return -1; } if (!_rts_is_active) { update_rts_line(); } return byte; } /* write one byte to the port */ size_t UARTDriver::write(uint8_t c) { if (lock_write_key != 0) { return 0; } _write_mutex.take_blocking(); if (!_initialised) { _write_mutex.give(); return 0; } while (_writebuf.space() == 0) { if (!_blocking_writes || unbuffered_writes) { _write_mutex.give(); return 0; } // release the semaphore while sleeping _write_mutex.give(); hal.scheduler->delay(1); _write_mutex.take_blocking(); } size_t ret = _writebuf.write(&c, 1); if (unbuffered_writes) { write_pending_bytes(); } _write_mutex.give(); return ret; } /* write a block of bytes to the port */ size_t UARTDriver::write(const uint8_t *buffer, size_t size) { if (!_initialised || lock_write_key != 0) { return 0; } if (_blocking_writes && !unbuffered_writes) { /* use the per-byte delay loop in write() above for blocking writes */ size_t ret = 0; while (size--) { if (write(*buffer++) != 1) break; ret++; } return ret; } WITH_SEMAPHORE(_write_mutex); size_t ret = _writebuf.write(buffer, size); if (unbuffered_writes) { write_pending_bytes(); } return ret; } /* lock the uart for exclusive use by write_locked() and read_locked() with the right key */ bool UARTDriver::lock_port(uint32_t write_key, uint32_t read_key) { if (lock_write_key && write_key != lock_write_key && read_key != 0) { // someone else is using it return false; } if (lock_read_key && read_key != lock_read_key && read_key != 0) { // someone else is using it return false; } lock_write_key = write_key; lock_read_key = read_key; return true; } /* write to a locked port. If port is locked and key is not correct then 0 is returned and write is discarded. All writes are non-blocking */ size_t UARTDriver::write_locked(const uint8_t *buffer, size_t size, uint32_t key) { if (lock_write_key != 0 && key != lock_write_key) { return 0; } WITH_SEMAPHORE(_write_mutex); return _writebuf.write(buffer, size); } /* wait for data to arrive, or a timeout. Return true if data has arrived, false on timeout */ bool UARTDriver::wait_timeout(uint16_t n, uint32_t timeout_ms) { uint32_t t0 = AP_HAL::millis(); while (available() < n) { chEvtGetAndClearEvents(EVT_DATA); _wait.n = n; _wait.thread_ctx = chThdGetSelfX(); uint32_t now = AP_HAL::millis(); if (now - t0 >= timeout_ms) { break; } chEvtWaitAnyTimeout(EVT_DATA, chTimeMS2I(timeout_ms - (now - t0))); } return available() >= n; } #ifndef HAL_UART_NODMA /* check for DMA completed for TX */ void UARTDriver::check_dma_tx_completion(void) { chSysLock(); if (!tx_bounce_buf_ready) { #if defined(STM32F3) bool enabled = (txdma->channel->CCR & STM32_DMA_CR_EN); #else bool enabled = (txdma->stream->CR & STM32_DMA_CR_EN); #endif if (!enabled) { if (dmaStreamGetTransactionSize(txdma) == 0) { tx_bounce_buf_ready = true; _last_write_completed_us = AP_HAL::micros(); chVTResetI(&tx_timeout); dma_handle->unlock_from_lockzone(); } } } chSysUnlock(); } /* handle a TX timeout. This can happen with using hardware flow control if CTS pin blocks transmit */ void UARTDriver::handle_tx_timeout(void *arg) { UARTDriver* uart_drv = (UARTDriver*)arg; chSysLockFromISR(); if (!uart_drv->tx_bounce_buf_ready) { dmaStreamDisable(uart_drv->txdma); const uint32_t tx_size = dmaStreamGetTransactionSize(uart_drv->txdma); uart_drv->tx_len -= MIN(uart_drv->tx_len, tx_size); uart_drv->tx_bounce_buf_ready = true; uart_drv->dma_handle->unlock_from_IRQ(); } chSysUnlockFromISR(); } /* write out pending bytes with DMA */ void UARTDriver::write_pending_bytes_DMA(uint32_t n) { WITH_SEMAPHORE(_write_mutex); check_dma_tx_completion(); if (!tx_bounce_buf_ready) { return; } /* TX DMA channel preparation.*/ _total_written += tx_len; _writebuf.advance(tx_len); tx_len = _writebuf.peekbytes(tx_bounce_buf, MIN(n, TX_BOUNCE_BUFSIZE)); if (tx_len == 0) { return; } if (!dma_handle->lock_nonblock()) { tx_len = 0; return; } if (dma_handle->has_contention()) { /* someone else is using this same DMA channel. To reduce latency we will drop the TX size with DMA on this UART to keep TX times below 250us. This can still suffer from long times due to CTS blockage */ uint32_t max_tx_bytes = 1 + (_baudrate * 250UL / 1000000UL); if (tx_len > max_tx_bytes) { tx_len = max_tx_bytes; } } chSysLock(); dmaStreamDisable(txdma); tx_bounce_buf_ready = false; osalDbgAssert(txdma != nullptr, "UART TX DMA allocation failed"); stm32_cacheBufferFlush(tx_bounce_buf, tx_len); dmaStreamSetMemory0(txdma, tx_bounce_buf); dmaStreamSetTransactionSize(txdma, tx_len); uint32_t dmamode = STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE; dmamode |= STM32_DMA_CR_CHSEL(sdef.dma_tx_channel_id); dmamode |= STM32_DMA_CR_PL(0); dmaStreamSetMode(txdma, dmamode | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE); dmaStreamEnable(txdma); uint32_t timeout_us = ((1000000UL * (tx_len+2) * 10) / _baudrate) + 500; chVTSetI(&tx_timeout, chTimeUS2I(timeout_us), handle_tx_timeout, this); chSysUnlock(); } #endif // HAL_UART_NODMA /* write any pending bytes to the device, non-DMA method */ void UARTDriver::write_pending_bytes_NODMA(uint32_t n) { WITH_SEMAPHORE(_write_mutex); ByteBuffer::IoVec vec[2]; uint16_t nwritten = 0; if (half_duplex && n > 1) { half_duplex_setup_tx(); } const auto n_vec = _writebuf.peekiovec(vec, n); for (int i = 0; i < n_vec; i++) { int ret = -1; if (sdef.is_usb) { ret = 0; #ifdef HAVE_USB_SERIAL ret = chnWriteTimeout((SerialUSBDriver*)sdef.serial, vec[i].data, vec[i].len, TIME_IMMEDIATE); #endif } else { #if HAL_USE_SERIAL == TRUE ret = chnWriteTimeout((SerialDriver*)sdef.serial, vec[i].data, vec[i].len, TIME_IMMEDIATE); #endif } if (ret < 0) { break; } if (ret > 0) { _last_write_completed_us = AP_HAL::micros(); nwritten += ret; } _writebuf.advance(ret); /* We wrote less than we asked for, stop */ if ((unsigned)ret != vec[i].len) { break; } } _total_written += nwritten; } /* write any pending bytes to the device */ void UARTDriver::write_pending_bytes(void) { uint32_t n; #ifndef HAL_UART_NODMA if (tx_dma_enabled) { check_dma_tx_completion(); } #endif // write any pending bytes n = _writebuf.available(); if (n <= 0) { return; } #ifndef HAL_UART_NODMA if (tx_dma_enabled) { write_pending_bytes_DMA(n); } else #endif { write_pending_bytes_NODMA(n); } // handle AUTO flow control mode if (_flow_control == FLOW_CONTROL_AUTO) { if (_first_write_started_us == 0) { _first_write_started_us = AP_HAL::micros(); } #ifndef HAL_UART_NODMA if (tx_dma_enabled) { // when we are using DMA we have a reliable indication that a write // has completed from the DMA completion interrupt if (_last_write_completed_us != 0) { _flow_control = FLOW_CONTROL_ENABLE; return; } } else #endif { // without DMA we need to look at the number of bytes written into the queue versus the // remaining queue space uint32_t space = qSpaceI(&((SerialDriver*)sdef.serial)->oqueue); uint32_t used = SERIAL_BUFFERS_SIZE - space; // threshold is 8 for the GCS_Common code to unstick SiK radios, which // sends 6 bytes with flow control disabled const uint8_t threshold = 8; if (_total_written > used && _total_written - used > threshold) { _flow_control = FLOW_CONTROL_ENABLE; return; } } if (AP_HAL::micros() - _first_write_started_us > 500*1000UL) { // it doesn't look like hw flow control is working hal.console->printf("disabling flow control on serial %u\n", sdef.get_index()); set_flow_control(FLOW_CONTROL_DISABLE); } } } /* setup for half duplex tramsmit. To cope with uarts that have level shifters and pullups we need to play a trick where we temporarily disable half-duplex while transmitting. That disables the receive part of the uart on the pin which allows the transmit side to correctly setup the idle voltage before the transmit starts. */ void UARTDriver::half_duplex_setup_tx(void) { #ifdef HAVE_USB_SERIAL if (!hd_tx_active) { chEvtGetAndClearFlags(&hd_listener); hd_tx_active = true; SerialDriver *sd = (SerialDriver*)(sdef.serial); sdStop(sd); sercfg.cr3 &= ~USART_CR3_HDSEL; sdStart(sd, &sercfg); } #endif } /* push any pending bytes to/from the serial port. This is called at 1kHz in the timer thread. Doing it this way reduces the system call overhead in the main task enormously. */ void UARTDriver::_timer_tick(void) { if (!_initialised) return; #ifdef HAVE_USB_SERIAL if (hd_tx_active && (chEvtGetAndClearFlags(&hd_listener) & CHN_OUTPUT_EMPTY) != 0) { /* half-duplex transmit has finished. We now re-enable the HDSEL bit for receive */ SerialDriver *sd = (SerialDriver*)(sdef.serial); sdStop(sd); sercfg.cr3 |= USART_CR3_HDSEL; sdStart(sd, &sercfg); hd_tx_active = false; } #endif #ifndef HAL_UART_NODMA if (rx_dma_enabled && rxdma) { chSysLock(); //Check if DMA is enabled //if not, it might be because the DMA interrupt was silenced //let's handle that here so that we can continue receiving #if defined(STM32F3) bool enabled = (rxdma->channel->CCR & STM32_DMA_CR_EN); #else bool enabled = (rxdma->stream->CR & STM32_DMA_CR_EN); #endif if (!enabled) { uint8_t len = RX_BOUNCE_BUFSIZE - dmaStreamGetTransactionSize(rxdma); if (len != 0) { stm32_cacheBufferInvalidate(rx_bounce_buf[rx_bounce_idx], len); _readbuf.write(rx_bounce_buf[rx_bounce_idx], len); receive_timestamp_update(); if (_rts_is_active) { update_rts_line(); } } // DMA disabled by idle interrupt never got a chance to be handled // we will enable it here dmaStreamDisable(rxdma); dma_rx_enable(); } chSysUnlock(); } #endif // don't try IO on a disconnected USB port if (sdef.is_usb) { #ifdef HAVE_USB_SERIAL if (((SerialUSBDriver*)sdef.serial)->config->usbp->state != USB_ACTIVE) { return; } #endif } if(sdef.is_usb) { #ifdef HAVE_USB_SERIAL ((GPIO *)hal.gpio)->set_usb_connected(); #endif } _in_timer = true; #ifndef HAL_UART_NODMA if (!rx_dma_enabled) #endif { // try to fill the read buffer ByteBuffer::IoVec vec[2]; const auto n_vec = _readbuf.reserve(vec, _readbuf.space()); for (int i = 0; i < n_vec; i++) { int ret = 0; //Do a non-blocking read if (sdef.is_usb) { #ifdef HAVE_USB_SERIAL ret = chnReadTimeout((SerialUSBDriver*)sdef.serial, vec[i].data, vec[i].len, TIME_IMMEDIATE); #endif } else { #if HAL_USE_SERIAL == TRUE ret = chnReadTimeout((SerialDriver*)sdef.serial, vec[i].data, vec[i].len, TIME_IMMEDIATE); #endif } if (ret < 0) { break; } #if CH_CFG_USE_EVENTS == TRUE if (parity_enabled && ((chEvtGetAndClearFlags(&ev_listener) & SD_PARITY_ERROR))) { // discard bytes with parity error ret = -1; } #endif if (!hd_tx_active) { _readbuf.commit((unsigned)ret); receive_timestamp_update(); } /* stop reading as we read less than we asked for */ if ((unsigned)ret < vec[i].len) { break; } } } if (_wait.thread_ctx && _readbuf.available() >= _wait.n) { chEvtSignal(_wait.thread_ctx, EVT_DATA); } if (unbuffered_writes) { // now send pending bytes. If we are doing "unbuffered" writes // then the send normally happens as soon as the bytes are // provided by the write() call, but if the write is larger // than the DMA buffer size then there can be extra bytes to // send here, and they must be sent with the write lock held WITH_SEMAPHORE(_write_mutex); write_pending_bytes(); } else { write_pending_bytes(); } _in_timer = false; } /* change flow control mode for port */ void UARTDriver::set_flow_control(enum flow_control flowcontrol) { if (sdef.rts_line == 0 || sdef.is_usb) { // no hw flow control available return; } #if HAL_USE_SERIAL == TRUE SerialDriver *sd = (SerialDriver*)(sdef.serial); _flow_control = flowcontrol; if (!_initialised) { // not ready yet, we just set variable for when we call begin return; } switch (_flow_control) { case FLOW_CONTROL_DISABLE: // force RTS active when flow disabled palSetLineMode(sdef.rts_line, 1); palClearLine(sdef.rts_line); _rts_is_active = true; // disable hardware CTS support chSysLock(); if ((sd->usart->CR3 & (USART_CR3_CTSE | USART_CR3_RTSE)) != 0) { sd->usart->CR1 &= ~USART_CR1_UE; sd->usart->CR3 &= ~(USART_CR3_CTSE | USART_CR3_RTSE); sd->usart->CR1 |= USART_CR1_UE; } chSysUnlock(); break; case FLOW_CONTROL_AUTO: // reset flow control auto state machine _first_write_started_us = 0; _last_write_completed_us = 0; FALLTHROUGH; case FLOW_CONTROL_ENABLE: // we do RTS in software as STM32 hardware RTS support toggles // the pin for every byte which loses a lot of bandwidth palSetLineMode(sdef.rts_line, 1); palClearLine(sdef.rts_line); _rts_is_active = true; // enable hardware CTS support, disable RTS support as we do that in software chSysLock(); if ((sd->usart->CR3 & (USART_CR3_CTSE | USART_CR3_RTSE)) != USART_CR3_CTSE) { // CTSE and RTSE can only be written when uart is disabled sd->usart->CR1 &= ~USART_CR1_UE; sd->usart->CR3 |= USART_CR3_CTSE; sd->usart->CR3 &= ~USART_CR3_RTSE; sd->usart->CR1 |= USART_CR1_UE; } chSysUnlock(); break; } #endif // HAL_USE_SERIAL } /* software update of rts line. We don't use the HW support for RTS as it has no hysteresis, so it ends up toggling RTS on every byte */ void UARTDriver::update_rts_line(void) { if (sdef.rts_line == 0 || _flow_control == FLOW_CONTROL_DISABLE) { return; } uint16_t space = _readbuf.space(); if (_rts_is_active && space < 16) { _rts_is_active = false; palSetLine(sdef.rts_line); } else if (!_rts_is_active && space > 32) { _rts_is_active = true; palClearLine(sdef.rts_line); } } /* setup unbuffered writes for lower latency */ bool UARTDriver::set_unbuffered_writes(bool on) { unbuffered_writes = on; return true; } /* setup parity */ void UARTDriver::configure_parity(uint8_t v) { if (sdef.is_usb) { // not possible return; } #if HAL_USE_SERIAL == TRUE // stop and start to take effect sdStop((SerialDriver*)sdef.serial); #ifdef USART_CR1_M0 // cope with F3 and F7 where there are 2 bits in CR1_M const uint32_t cr1_m0 = USART_CR1_M0; #else const uint32_t cr1_m0 = USART_CR1_M; #endif switch (v) { case 0: // no parity sercfg.cr1 &= ~(USART_CR1_PCE | USART_CR1_PS | USART_CR1_M); break; case 1: // odd parity // setting USART_CR1_M ensures extra bit is used as parity // not last bit of data sercfg.cr1 |= cr1_m0 | USART_CR1_PCE; sercfg.cr1 |= USART_CR1_PS; break; case 2: // even parity sercfg.cr1 |= cr1_m0 | USART_CR1_PCE; sercfg.cr1 &= ~USART_CR1_PS; break; } sdStart((SerialDriver*)sdef.serial, &sercfg); #if CH_CFG_USE_EVENTS == TRUE if (parity_enabled) { chEvtUnregister(chnGetEventSource((SerialDriver*)sdef.serial), &ev_listener); } parity_enabled = (v != 0); if (parity_enabled) { chEvtRegisterMaskWithFlags(chnGetEventSource((SerialDriver*)sdef.serial), &ev_listener, EVT_PARITY, SD_PARITY_ERROR); } #endif #ifndef HAL_UART_NODMA if (rx_dma_enabled) { // Configure serial driver to skip handling RX packets // because we will handle them via DMA ((SerialDriver*)sdef.serial)->usart->CR1 &= ~USART_CR1_RXNEIE; } #endif #endif // HAL_USE_SERIAL } /* set stop bits */ void UARTDriver::set_stop_bits(int n) { if (sdef.is_usb) { // not possible return; } #if HAL_USE_SERIAL // stop and start to take effect sdStop((SerialDriver*)sdef.serial); switch (n) { case 1: sercfg.cr2 = _cr2_options | USART_CR2_STOP1_BITS; break; case 2: sercfg.cr2 = _cr2_options | USART_CR2_STOP2_BITS; break; } sdStart((SerialDriver*)sdef.serial, &sercfg); #ifndef HAL_UART_NODMA if (rx_dma_enabled) { //Configure serial driver to skip handling RX packets //because we will handle them via DMA ((SerialDriver*)sdef.serial)->usart->CR1 &= ~USART_CR1_RXNEIE; } #endif #endif // HAL_USE_SERIAL } // record timestamp of new incoming data void UARTDriver::receive_timestamp_update(void) { _receive_timestamp[_receive_timestamp_idx^1] = AP_HAL::micros64(); _receive_timestamp_idx ^= 1; } /* return timestamp estimate in microseconds for when the start of a nbytes packet arrived on the uart. This should be treated as a time constraint, not an exact time. It is guaranteed that the packet did not start being received after this time, but it could have been in a system buffer before the returned time. This takes account of the baudrate of the link. For transports that have no baudrate (such as USB) the time estimate may be less accurate. A return value of zero means the HAL does not support this API */ uint64_t UARTDriver::receive_time_constraint_us(uint16_t nbytes) { uint64_t last_receive_us = _receive_timestamp[_receive_timestamp_idx]; if (_baudrate > 0 && !sdef.is_usb) { // assume 10 bits per byte. For USB we assume zero transport delay uint32_t transport_time_us = (1000000UL * 10UL / _baudrate) * (nbytes + available()); last_receive_us -= transport_time_us; } return last_receive_us; } /* set user specified PULLUP/PULLDOWN options from SERIALn_OPTIONS */ void UARTDriver::set_pushpull(uint16_t options) { #if HAL_USE_SERIAL == TRUE && !defined(STM32F1) if ((options & OPTION_PULLDOWN_RX) && sdef.rx_line) { palLineSetPushPull(sdef.rx_line, PAL_PUSHPULL_PULLDOWN); } if ((options & OPTION_PULLDOWN_TX) && sdef.tx_line) { palLineSetPushPull(sdef.tx_line, PAL_PUSHPULL_PULLDOWN); } if ((options & OPTION_PULLUP_RX) && sdef.rx_line) { palLineSetPushPull(sdef.rx_line, PAL_PUSHPULL_PULLUP); } if ((options & OPTION_PULLUP_TX) && sdef.tx_line) { palLineSetPushPull(sdef.tx_line, PAL_PUSHPULL_PULLUP); } #endif } // set optional features, return true on success bool UARTDriver::set_options(uint16_t options) { if (sdef.is_usb) { // no options allowed on USB return (options == 0); } bool ret = true; _last_options = options; #if HAL_USE_SERIAL == TRUE SerialDriver *sd = (SerialDriver*)(sdef.serial); uint32_t cr2 = sd->usart->CR2; uint32_t cr3 = sd->usart->CR3; bool was_enabled = (sd->usart->CR1 & USART_CR1_UE); #if defined(STM32F7) || defined(STM32H7) || defined(STM32F3) // F7 has built-in support for inversion in all uarts ioline_t rx_line = (options & OPTION_SWAP)?sdef.tx_line:sdef.rx_line; ioline_t tx_line = (options & OPTION_SWAP)?sdef.rx_line:sdef.tx_line; if (options & OPTION_RXINV) { cr2 |= USART_CR2_RXINV; _cr2_options |= USART_CR2_RXINV; if (rx_line != 0) { palLineSetPushPull(rx_line, PAL_PUSHPULL_PULLDOWN); } } else { cr2 &= ~USART_CR2_RXINV; if (rx_line != 0) { palLineSetPushPull(rx_line, PAL_PUSHPULL_PULLUP); } } if (options & OPTION_TXINV) { cr2 |= USART_CR2_TXINV; _cr2_options |= USART_CR2_TXINV; if (tx_line != 0) { palLineSetPushPull(tx_line, PAL_PUSHPULL_PULLDOWN); } } else { cr2 &= ~USART_CR2_TXINV; if (tx_line != 0) { palLineSetPushPull(tx_line, PAL_PUSHPULL_PULLUP); } } // F7 can also support swapping RX and TX pins if (options & OPTION_SWAP) { cr2 |= USART_CR2_SWAP; _cr2_options |= USART_CR2_SWAP; } else { cr2 &= ~USART_CR2_SWAP; } #else // STM32F4 // F4 can do inversion by GPIO if enabled in hwdef.dat, using // TXINV and RXINV options if (options & OPTION_RXINV) { if (sdef.rxinv_gpio >= 0) { hal.gpio->write(sdef.rxinv_gpio, sdef.rxinv_polarity); } else { ret = false; } } if (options & OPTION_TXINV) { if (sdef.txinv_gpio >= 0) { hal.gpio->write(sdef.txinv_gpio, sdef.txinv_polarity); } else { ret = false; } } if (options & OPTION_SWAP) { ret = false; } #endif // STM32xx // both F4 and F7 can do half-duplex if (options & OPTION_HDPLEX) { cr3 |= USART_CR3_HDSEL; _cr3_options |= USART_CR3_HDSEL; if (!half_duplex) { chEvtRegisterMaskWithFlags(chnGetEventSource((SerialDriver*)sdef.serial), &hd_listener, EVT_TRANSMIT_END, CHN_OUTPUT_EMPTY); half_duplex = true; } #ifndef HAL_UART_NODMA if (rx_dma_enabled && rxdma) { dmaStreamDisable(rxdma); } #endif // force DMA off when using half-duplex as the timing may affect other devices // sharing the DMA channel rx_dma_enabled = tx_dma_enabled = false; } else { cr3 &= ~USART_CR3_HDSEL; } set_pushpull(options); if (sd->usart->CR2 == cr2 && sd->usart->CR3 == cr3) { // no change return ret; } if (was_enabled) { sd->usart->CR1 &= ~USART_CR1_UE; } sd->usart->CR2 = cr2; sd->usart->CR3 = cr3; if (was_enabled) { sd->usart->CR1 |= USART_CR1_UE; } #endif // HAL_USE_SERIAL == TRUE return ret; } // get optional features uint8_t UARTDriver::get_options(void) const { return _last_options; } #if HAL_USE_SERIAL_USB == TRUE /* initialise the USB bus, called from both UARTDriver and stdio for startup debug This can be called before the hal is initialised so must not call any hal functions */ void usb_initialise(void) { static bool initialised; if (initialised) { return; } initialised = true; sduObjectInit(&SDU1); sduStart(&SDU1, &serusbcfg1); #if HAL_HAVE_DUAL_USB_CDC sduObjectInit(&SDU2); sduStart(&SDU2, &serusbcfg2); #endif /* * Activates the USB driver and then the USB bus pull-up on D+. * Note, a delay is inserted in order to not have to disconnect the cable * after a reset. */ usbDisconnectBus(serusbcfg1.usbp); chThdSleep(chTimeUS2I(1500)); usbStart(serusbcfg1.usbp, &usbcfg); usbConnectBus(serusbcfg1.usbp); } #endif #endif //CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS