/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* temperature calibration library */ #include "AP_TempCalibration.h" #include extern const AP_HAL::HAL& hal; #define TCAL_DEBUG 0 #if TCAL_DEBUG # define debug(fmt, args ...) do {printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0) #else # define debug(fmt, args ...) #endif // table of user settable and learned parameters const AP_Param::GroupInfo AP_TempCalibration::var_info[] = { // @Param: ENABLED // @DisplayName: Temperature calibration enable // @Description: Enable temperature calibration. Set to 0 to disable. Set to 1 to use learned values. Set to 2 to learn new values and use the values // @Values: 0:Disabled,1:Enabled,2:EnableAndLearn // @User: Advanced AP_GROUPINFO_FLAGS("_ENABLED", 1, AP_TempCalibration, enabled, TC_DISABLED, AP_PARAM_FLAG_ENABLE), // @Param: TEMP_MIN // @DisplayName: Min learned temperature // @Description: Minimum learned temperature. This is automatically set by the learning process // @Units: degC // @ReadOnly: True // @Volatile: True // @User: Advanced AP_GROUPINFO("_TEMP_MIN", 2, AP_TempCalibration, temp_min, 0), // @Param: TEMP_MIN // @DisplayName: Min learned temperature // @Description: Minimum learned temperature. This is automatically set by the learning process // @Units: degC // @ReadOnly: True // @Volatile: True // @User: Advanced AP_GROUPINFO("_TEMP_MIN", 3, AP_TempCalibration, temp_min, 0), // @Param: TEMP_MAX // @DisplayName: Max learned temperature // @Description: Maximum learned temperature. This is automatically set by the learning process // @Units: degC // @ReadOnly: True // @Volatile: True // @User: Advanced AP_GROUPINFO("_TEMP_MAX", 4, AP_TempCalibration, temp_max, 0), // @Param: BARO_EXP // @DisplayName: Barometer exponent // @Description: Learned exponent for barometer temperature correction // @ReadOnly: True // @Volatile: True // @User: Advanced AP_GROUPINFO("_BARO_EXP", 5, AP_TempCalibration, baro_exponent, 0), AP_GROUPEND }; AP_TempCalibration::AP_TempCalibration(AP_InertialSensor &_ins) : ins(_ins) { } /* calculate the correction given an exponent and a temperature This one parameter correction is deliberately chosen to be very robust for extrapolation. It fits the characteristics of the ICM-20789 barometer nicely. */ float AP_TempCalibration::calculate_correction(float temp, float exponent) const { return powf(MAX(temp - Tzero, 0), exponent); } /* setup for learning */ void AP_TempCalibration::setup_learning(void) { learn_temp_start = AP::baro().get_temperature(); learn_temp_step = 0.25; learn_count = 200; learn_i = 0; if (learn_values != nullptr) { delete [] learn_values; } learn_values = new float[learn_count]; if (learn_values == nullptr) { return; } } /* calculate the sum of squares range of pressure values we get with the current data. This is the function we try to minimise in the calibration */ float AP_TempCalibration::calculate_p_range(float baro_factor) const { float sum = 0; float P0 = learn_values[0] + calculate_correction(learn_temp_start, baro_factor); for (uint16_t i=0; i= current_err) { test_exponent = baro_exponent - learn_delta; test_err = calculate_p_range(test_exponent); } if (test_exponent <= exp_limit_max && test_exponent >= exp_limit_min && test_err < current_err) { // move to new value debug("CAL: %.2f\n", test_exponent); if (!is_equal(test_exponent, baro_exponent.get())) { baro_exponent.set_and_save(test_exponent); } temp_min.set_and_save_ifchanged(learn_temp_start); temp_max.set_and_save_ifchanged(learn_temp_start + learn_i*learn_temp_step); } } /* update calibration learning */ void AP_TempCalibration::learn_calibration(void) { // just for first baro now const AP_Baro &baro = AP::baro(); if (!baro.healthy(0) || hal.util->get_soft_armed() || baro.get_temperature(0) < Tzero) { return; } // if we have any movement then we reset learning if (learn_values == nullptr || !ins.is_still()) { debug("learn reset\n"); setup_learning(); if (learn_values == nullptr) { return; } } float temp = baro.get_temperature(0); float P = baro.get_pressure(0); uint16_t idx = (temp - learn_temp_start) / learn_temp_step; if (idx >= learn_count) { // could change learn_temp_step here return; } if (is_zero(learn_values[idx])) { learn_values[idx] = P; debug("learning %u %.2f at %.2f\n", idx, learn_values[idx], temp); } else { // filter in new value learn_values[idx] = 0.9 * learn_values[idx] + 0.1 * P; } learn_i = MAX(learn_i, idx); uint32_t now = AP_HAL::millis(); if (now - last_learn_ms > 100 && idx*learn_temp_step > min_learn_temp_range && temp - learn_temp_start > temp_max - temp_min) { last_learn_ms = now; // run estimation and update parameters calculate_calibration(); } } /* apply learned calibration for current temperature */ void AP_TempCalibration::apply_calibration(void) { AP_Baro &baro = AP::baro(); // just for first baro now if (!baro.healthy(0)) { return; } float temp = baro.get_temperature(0); float correction = calculate_correction(temp, baro_exponent); baro.set_pressure_correction(0, correction); } /* called at 10Hz from the main thread. This is called both when armed and disarmed. It only does learning while disarmed, but needs to supply the corrections to the sensor libraries at all times */ void AP_TempCalibration::update(void) { switch (enabled.get()) { case TC_DISABLED: break; case TC_ENABLE_LEARN: learn_calibration(); // fall through case TC_ENABLE_USE: apply_calibration(); break; } }