#include "Copter.h" // get_smoothing_gain - returns smoothing gain to be passed into attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw // result is a number from 2 to 12 with 2 being very sluggish and 12 being very crisp float Copter::get_smoothing_gain() { return (2.0f + (float)g.rc_feel_rp/10.0f); } // get_pilot_desired_heading - transform pilot's yaw input into a // desired yaw rate // returns desired yaw rate in centi-degrees per second float Copter::get_pilot_desired_yaw_rate(int16_t stick_angle) { float yaw_request; // calculate yaw rate request if (g2.acro_y_expo <= 0) { yaw_request = stick_angle * g.acro_yaw_p; } else { // expo variables float y_in, y_in3, y_out; // range check expo if (g2.acro_y_expo > 1.0f || g2.acro_y_expo < 0.5f) { g2.acro_y_expo = 1.0f; } // yaw expo y_in = float(stick_angle)/ROLL_PITCH_YAW_INPUT_MAX; y_in3 = y_in*y_in*y_in; y_out = (g2.acro_y_expo * y_in3) + ((1.0f - g2.acro_y_expo) * y_in); yaw_request = ROLL_PITCH_YAW_INPUT_MAX * y_out * g.acro_yaw_p; } // convert pilot input to the desired yaw rate return yaw_request; } /************************************************************* * yaw controllers *************************************************************/ // get_roi_yaw - returns heading towards location held in roi_WP // should be called at 100hz float Copter::get_roi_yaw() { static uint8_t roi_yaw_counter = 0; // used to reduce update rate to 100hz roi_yaw_counter++; if (roi_yaw_counter >= 4) { roi_yaw_counter = 0; yaw_look_at_WP_bearing = get_bearing_cd(inertial_nav.get_position(), roi_WP); } return yaw_look_at_WP_bearing; } float Copter::get_look_ahead_yaw() { const Vector3f& vel = inertial_nav.get_velocity(); float speed = norm(vel.x,vel.y); // Commanded Yaw to automatically look ahead. if (position_ok() && (speed > YAW_LOOK_AHEAD_MIN_SPEED)) { yaw_look_ahead_bearing = degrees(atan2f(vel.y,vel.x))*100.0f; } return yaw_look_ahead_bearing; } /************************************************************* * throttle control ****************************************************************/ // update estimated throttle required to hover (if necessary) // called at 100hz void Copter::update_throttle_hover() { #if FRAME_CONFIG != HELI_FRAME // if not armed or landed exit if (!motors->armed() || ap.land_complete) { return; } // do not update in manual throttle modes or Drift if (flightmode->has_manual_throttle() || (control_mode == DRIFT)) { return; } // do not update while climbing or descending if (!is_zero(pos_control->get_desired_velocity().z)) { return; } // get throttle output float throttle = motors->get_throttle(); // calc average throttle if we are in a level hover if (throttle > 0.0f && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) { // Can we set the time constant automatically motors->update_throttle_hover(0.01f); } #endif } // set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared void Copter::set_throttle_takeoff() { // tell position controller to reset alt target and reset I terms pos_control->init_takeoff(); } // transform pilot's manual throttle input to make hover throttle mid stick // used only for manual throttle modes // thr_mid should be in the range 0 to 1 // returns throttle output 0 to 1 float Copter::get_pilot_desired_throttle(int16_t throttle_control, float thr_mid) { if (thr_mid <= 0.0f) { thr_mid = motors->get_throttle_hover(); } int16_t mid_stick = get_throttle_mid(); // protect against unlikely divide by zero if (mid_stick <= 0) { mid_stick = 500; } // ensure reasonable throttle values throttle_control = constrain_int16(throttle_control,0,1000); // calculate normalised throttle input float throttle_in; if (throttle_control < mid_stick) { // below the deadband throttle_in = ((float)throttle_control)*0.5f/(float)mid_stick; }else if(throttle_control > mid_stick) { // above the deadband throttle_in = 0.5f + ((float)(throttle_control-mid_stick)) * 0.5f / (float)(1000-mid_stick); }else{ // must be in the deadband throttle_in = 0.5f; } float expo = constrain_float(-(thr_mid-0.5)/0.375, -0.5f, 1.0f); // calculate the output throttle using the given expo function float throttle_out = throttle_in*(1.0f-expo) + expo*throttle_in*throttle_in*throttle_in; return throttle_out; } // get_pilot_desired_climb_rate - transform pilot's throttle input to climb rate in cm/s // without any deadzone at the bottom float Copter::get_pilot_desired_climb_rate(float throttle_control) { // throttle failsafe check if( failsafe.radio ) { return 0.0f; } #if TOY_MODE_ENABLED == ENABLED if (g2.toy_mode.enabled()) { // allow throttle to be reduced after throttle arming and for // slower descent close to the ground g2.toy_mode.throttle_adjust(throttle_control); } #endif float desired_rate = 0.0f; float mid_stick = get_throttle_mid(); float deadband_top = mid_stick + g.throttle_deadzone; float deadband_bottom = mid_stick - g.throttle_deadzone; // ensure a reasonable throttle value throttle_control = constrain_float(throttle_control,0.0f,1000.0f); // ensure a reasonable deadzone g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400); // check throttle is above, below or in the deadband if (throttle_control < deadband_bottom) { // below the deadband desired_rate = get_pilot_speed_dn() * (throttle_control-deadband_bottom) / deadband_bottom; }else if (throttle_control > deadband_top) { // above the deadband desired_rate = g.pilot_speed_up * (throttle_control-deadband_top) / (1000.0f-deadband_top); }else{ // must be in the deadband desired_rate = 0.0f; } return desired_rate; } // get_non_takeoff_throttle - a throttle somewhere between min and mid throttle which should not lead to a takeoff float Copter::get_non_takeoff_throttle() { return MAX(0,motors->get_throttle_hover()/2.0f); } // get_surface_tracking_climb_rate - hold copter at the desired distance above the ground // returns climb rate (in cm/s) which should be passed to the position controller float Copter::get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt) { #if RANGEFINDER_ENABLED == ENABLED static uint32_t last_call_ms = 0; float distance_error; float velocity_correction; float current_alt = inertial_nav.get_altitude(); uint32_t now = millis(); // reset target altitude if this controller has just been engaged if (now - last_call_ms > RANGEFINDER_TIMEOUT_MS) { target_rangefinder_alt = rangefinder_state.alt_cm + current_alt_target - current_alt; } last_call_ms = now; // adjust rangefinder target alt if motors have not hit their limits if ((target_rate<0 && !motors->limit.throttle_lower) || (target_rate>0 && !motors->limit.throttle_upper)) { target_rangefinder_alt += target_rate * dt; } /* handle rangefinder glitches. When we get a rangefinder reading more than RANGEFINDER_GLITCH_ALT_CM different from the current rangefinder reading then we consider it a glitch and reject until we get RANGEFINDER_GLITCH_NUM_SAMPLES samples in a row. When that happens we reset the target altitude to the new reading */ int32_t glitch_cm = rangefinder_state.alt_cm - target_rangefinder_alt; if (glitch_cm >= RANGEFINDER_GLITCH_ALT_CM) { rangefinder_state.glitch_count = MAX(rangefinder_state.glitch_count+1,1); } else if (glitch_cm <= -RANGEFINDER_GLITCH_ALT_CM) { rangefinder_state.glitch_count = MIN(rangefinder_state.glitch_count-1,-1); } else { rangefinder_state.glitch_count = 0; } if (abs(rangefinder_state.glitch_count) >= RANGEFINDER_GLITCH_NUM_SAMPLES) { // shift to the new rangefinder reading target_rangefinder_alt = rangefinder_state.alt_cm; rangefinder_state.glitch_count = 0; } if (rangefinder_state.glitch_count != 0) { // we are currently glitching, just use the target rate return target_rate; } // calc desired velocity correction from target rangefinder alt vs actual rangefinder alt (remove the error already passed to Altitude controller to avoid oscillations) distance_error = (target_rangefinder_alt - rangefinder_state.alt_cm) - (current_alt_target - current_alt); velocity_correction = distance_error * g.rangefinder_gain; velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX); // return combined pilot climb rate + rate to correct rangefinder alt error return (target_rate + velocity_correction); #else return (float)target_rate; #endif } // get target climb rate reduced to avoid obstacles and altitude fence float Copter::get_avoidance_adjusted_climbrate(float target_rate) { #if AC_AVOID_ENABLED == ENABLED avoid.adjust_velocity_z(pos_control->get_pos_z_p().kP(), pos_control->get_accel_z(), target_rate, G_Dt); return target_rate; #else return target_rate; #endif } // set_accel_throttle_I_from_pilot_throttle - smoothes transition from pilot controlled throttle to autopilot throttle void Copter::set_accel_throttle_I_from_pilot_throttle() { // get last throttle input sent to attitude controller float pilot_throttle = constrain_float(attitude_control->get_throttle_in(), 0.0f, 1.0f); // shift difference between pilot's throttle and hover throttle into accelerometer I pos_control->get_accel_z_pid().set_integrator((pilot_throttle-motors->get_throttle_hover()) * 1000.0f); } // rotate vector from vehicle's perspective to North-East frame void Copter::rotate_body_frame_to_NE(float &x, float &y) { float ne_x = x*ahrs.cos_yaw() - y*ahrs.sin_yaw(); float ne_y = x*ahrs.sin_yaw() + y*ahrs.cos_yaw(); x = ne_x; y = ne_y; } // It will return the PILOT_SPEED_DN value if non zero, otherwise if zero it returns the PILOT_SPEED_UP value. uint16_t Copter::get_pilot_speed_dn() { if (g2.pilot_speed_dn == 0) { return abs(g.pilot_speed_up); } else { return abs(g2.pilot_speed_dn); } }